

110, 187 & 250 Series FASTON Terminals

1. SCOPE

1.1. Content

> This specification defines the performance, tests, and quality requirements for FASTON contact, including 250, 187 and 110 series.

1.2. Qualification

> When tests are performed on the subject product line, procedures specified in 3.4 shall be used. All inspections shall be performed using the applicable inspection plan and product drawing. All contacts must be crimped to comply with Application Specification using the appropriate TE Applicator or Hand Tool as specified.

2. APPLICABLE DOCUMENTS

The following documents form a part of this specification to the extent specified herein. Unless otherwise specified, the latest edition of the document applies. In the event of conflict between the requirements of this specification and the product drawing, the product drawing shall take precedence. In the event of conflict between the requirements of this specification and the referenced documents. this specification shall take precedence.

2.1. TE Connectivity (TE) Documents

TE Product Drawings (Customer Drawings)

2.2. Industry Documents

UL 310	Standard for Electrical Quick Connect Terminals
EIA-364	Electrical Connector/Socket Test Procedures Including Environmental Classifications
IEC 60251	Standard for Connectors for Electronic Equipment

2.3. **Reference Documents**

> 109-197 Test Specification (TE Test Specifications vs. EIA and IEC Test Methods)

3. REQUIREMENTS

3.1. **Design and Construction**

> Product shall be of the design, construction, and physical dimensions specified on the applicable product drawing.

3.2. Ratings

Current: 3 – 20 Amps

Temperature Rating

- Plain Brass or Tin-Plated Brass Up to 110°C/-30°C
- Silver Plated Brass Up to 130°C/-30°C
- Plain Bronze or Tin-Plated Bronze Up to 110°C/-40°C
- Silver Plated Bronze Up to 130°C/-40°C
- Nickel Plated Steel Up to 250°C/-30°C

3.3. Performance and Test Description

Product is designed to meet the electrical, mechanical, and environmental performance requirements specified in 3.4. Unless otherwise specified, all tests shall be performed at ambient environmental conditions.

© 2022 TE Connectivity Ltd. family of companies. PRODUCT INFORMATION 1-800-522-6752 All Rights Reserved *Trademark.

3.4. Test Requirements and Procedures Summary

Test Description	Requiren	nent		Procedure			
Initial Examination of Product	drawing; i such as c damages fusion tha	no defectiv racks, bre	parts, rust and mental to	EIA-364-18 Visually and tactually inspect parts for appearance in accordance with applicable Q.I.P (Quality Inspection Procedure) and product drawing for presence of stated defects.			
Final Examination of Product	such as c damages fusion tha	racks, bre	parts, rust and mental to	EIA-364-18 Visually and tactually inspect parts for appearance in accordance with applicable Q.I.P (Quality Inspection Procedure) and product drawing for presence of stated defects.			
Electrical							
Termination Resistance			mΩ) maximum mΩ) maximum	EIA-364-23 Subject the circuit to 1A (DC) current. After temperature has stabilized, probe 2 points on the mated tab contact that with one point 75 mm from the wire crimp. Calculate resistance after deducting bulk wire resistance. See Figure 1.			
	Wire Size (AWG)	Test Current (Amps)	Temperature Rise (°C)	UL 310 and IEC 60512-5-1			
	24	3	30	Measure the temperature rise above			
	22	3	30	ambient created by the energizing current. Measurement must be taken at			
Temperature Rising	20	5	30	a place where there is no influence from air convection. Stabilize temperature at			
	18	7	30	a single current level until 3 readings at 5 minute intervals are within 1°C. The			
	16	10	30	probing point shall be soldered to			
	14	15	30	stabilize the measurement reading.			
	12	20	30				
Mechanical							
Contact Insertion Force	187 Serie	s: 76N ma s:67N ma s: 53N ma	х.	UL 310, Para 6.4 Operation Speed: 25.4 mm/min Measure the force required to mate the tab to receptacle terminal.			
Contact Extraction Force	250 series 187 Serie	extraction s: 13 min. s: 13 min. s: 9N min		UL 310, Para 6.4 Operation Speed: 25.4 mm/min Apply an axial pull force to release the tab from the receptacle			
Wire Crimp Tensile Strength			Crimp Tensile (min.) (N)	UL 310, Para 6.3 Operation Speed: 25.4 mm/min			

	24	22.3	Apply an axial pull force to the crimped wire. Crimp tensile strength is		
	22	36	determined when the wire is broken or		
	20 58		is pulled off. Exclude insulation crimp.		
	18	89			
	16	133			
	14	223			
	12	311			
	10	356			
Environmental					
Humidity Steady-State	Final Termination Resistance: 6 m Ω (maximum)		EIA-364-31, Condition A, Method II Subject mated contacts to environment at 40±5°C and 90-95% RH for 96 hours. Sample shall be placed in the chamber out of the path of falling water drops. Measurement shall be taken upon completion of exposure period.		
Thermal Shock Final Termination mΩ (maximum)		Resistance: 6	EIA-364-32, Test Condition VII Subject mated specimens to 5 cycles between -40°C and 105°C with 30 minute dwell time at temperature extremes and 5 minute (maximum) transition between temperatures.		

NOTE

Shall meet the visual requirements, show no physical damage, and met requirements of additional tests as specified in the Product Qualification and Requalification Test Sequence.

3.5. Product Qualification and Requalification Test Sequence

	TEST GROUP				
TEST OR EXAMINATION	1	2	3	4	
	TEST SEQUENCE (a)				
Examination of Product	1, 3	1, 4	1,3	1, 7	
Termination Resistance				2,4,6	
Temperature Rising			2		
Contact Insertion Force		2			
Contact Extraction Force		3			
Wire Crimp Tensile Strength	2				
Humidity Steady-State				3	
Thermal Shock				5	

- (a) Numbers indicate sequence in which tests are performed.
- (b) Prepare samples in accordance with UL 310. Fit must be sufficient to produce good thermal contact and void of free movement between thermocouple and contact. Thermocouple lead must have strain relief suitable to protect interface.

4. QUALITY ASSURANCE PROVISIONS

4.1. Test Conditions

Unless otherwise specified, all the tests shall be performed in any combination of the following test conditions.

Temperature	15-35℃		
Relative Humidity	45-75%		
Atmospheric Pressure	86.6-106.7KPa		

4.2. Re-Qualification Testing

If changes that significantly affecting form, fit, or function are made to the product or manufacturing process, product assurance shall coordinate re-qualification testing consisting of all or part of the original testing sequence as determined by development/product, quality, and reliability engineering.

4.3. Acceptance

Acceptance is based on verification that the product meets the requirements of 3.4. Failures attributed to equipment, test setup, or operator deficiencies shall not disqualify the product. If product failure occurs, corrective action shall be taken and specimens re-submitted for qualification. Testing to confirm corrective action is required before re-submittal.

4.4. Quality Conformance Inspection

The applicable quality inspection plan shall specify the sampling acceptable quality level to be used. Dimensional and functional requirements shall be in accordance with the applicable product drawing and this specification.

Figure 1: Termination Resistance Measurement Method