

25JAN22 Rev A

AMPSEAL* Reduced Wire Size Connectors

1. INTRODUCTION

1.1. Purpose

Testing was performed on AMPSEAL* Reduced Wire Size Connectors to determine their conformance to the requirements of Product Specification 108-160402

1.2. Scope

This report covers the electrical, mechanical, and environmental performance of the AMPSEAL Reduced Wire Size Connectors. Testing was performed at the TE Product Testing Laboratory

1.3. Conclusion

The AMPSEAL*Reduced Wire Size Connectors listed in paragraph 1.5, conform to the electrical, mechanical, and environmental requirements of Product Specification 108-160402 Revision A

1.4. Product Description

AMPSEAL Reduced Wire Size Connectors are high density, general purpose, environmentally sealed connectors used for wire to PCB applications in automotive, consumer, industrial, trucking, off-highway, construction, farming, and marine markets

1.5. Test Specimens

Test specimens were representative of normal production lots. Specimens identified with the following part numbers were used for testing:

TERMINAL TESTING						
Test Group	Quantity	Part Number	Description			
1	6	770520-5	Tin receptacle with 20 AWG wire			
	5	770520-5	Tin receptacle with 22 AWG wire			
	6	770520-6	Tin receptacle with 22 AWG wire			
	5	770520-6	Tin receptacle with 24 AWG wire			
	100	770520-5	Tin receptacle with 20 AWG wire			
2	100	770520-5	Tin receptacle with 22 AWG wire			
	100	770520-6	Tin receptacle with 22 AWG wire			
	100	770520-6	Tin receptacle with 24 AWG wire			
	50	770520-5	Tin receptacle with 20 AWG wire			
3	50	770520-5	Tin receptacle with 22 AWG wire			
3	50	770520-6	Tin receptacle with 22 AWG wire			
	50	770520-6	Tin receptacle with 24 AWG wire			
	10	770520-5	Tin receptacle with 20 AWG wire			
4	10	770520-5	Tin receptacle with 22 AWG wire			
4	10	770520-6	Tin receptacle with 22 AWG wire			
	10	770520-6	Tin receptacle with 24 AWG wire			
5	6	2371884-1	23 position plug assembly			
	6	776228-1	23 position tin header assembly			
	69	770520-5	Tin receptacle with 20 AWG wire			
	69	770520-6	Tin receptacle with 22 AWG wire			

Figure 1

©2011 Tyco Electronics Corporation, a TE Connectivity Ltd. Company All Rights Reserved | Indicates Change

1.5 Test Specimens (cont)

MAT SEAL TESTING						
Group	Quantity	Part Number	Description			
1	10	2371884-1	23 position plug assembly			
	10	776200-1	23 position tin header assembly			
	230	770520-6	Tin receptacle with 24 AWG wire			
	10	2371884-1	23 position plug assembly			
2	10	776200-1	23 position tin header assembly			
	230	770520-6	Tin receptacle with 24 AWG wire			
	10	2371884-1	23 position plug assembly			
3	10	776200-1	23 position tin header assembly			
	230	770520-6	Tin receptacle with 24 AWG wire			
4	3	2371884-1	23 position plug assembly			
4	23	770520-6	23 position plug assembly			
	2	2371884-1	23 position plug assembly			
5	2	776200-1	23 position tin header assembly			
	46	770520-6	Tin receptacle with 24 AWG wire			
	1	2371884-1	23 position plug assembly			
6	1	776200-1	23 position plug assembly			
	11	770520-1	Tin receptacle with 20 AWG wire			
	12	776264-1	Sealing plug, size 20 cavity			
	1	2371884-1	23 position plug assembly			
7	1	776200-1	23 position plug assembly			
	11	770520-1	Tin receptacle with 20 AWG wire			
	12	776264-1	Sealing plug, size 20 cavity			

Figure 2

1.6. Environmental Conditions

Unless otherwise noted, the following environmental conditions prevailed during testing:

- Temperature: 15 to 35°C
- Relative Humidity: 25 to 75%

1.7 Qualification Test Sequence

	TEST GROUP (a)						
TERMINAL TEST OR EXAMINATION		2	3	4	5		
	TEST SEQUENCE (b)						
Examination of product	1	1	1,7	1,7	1,7		
Termination resistance, dry circuit			2,4,6				
Insulation resistance					2,5		
Dielectric withstand voltage					3,6		
Temperature rise vs current				4			
Current cycling				5			
Voltage drop				3,6			
Crimp tensile, USCAR-21		2					
Terminal cycling				2			
Conductor crimp cross section, USCAR-21	2						
Temperature/humidity cycling, Figure 3					4		
Temperature/humidity cycling, USCAR-21			5				
Thermal shock			3				

Figure 3a

MAT SEAL TEST OR	TEST GROUP (a)							
EXAMINATION	1	2	3	4	5	6	7	
EXAMINATION	TEST SEQUENCE (b)							
Examination of product	1,11	1,6	1,5	1,3	1,4	1,3	1,3	
Insulation resistance	2,5,9	2,5	2,4					
Dielectric withstand voltage	3,6,10							
Terminal insertion				2				
Maintenance aging, durability					2			
Temperature life	7						2	
Immersion, TE Spec 109-74-5	4,8							
Immersion, ISO 20653:2006		3						
Dust		4						
High pressure spray			3			2		
Pressure					3			

Figure 3b

NOTE

(a) See paragraph 1.5

(b) Numbers indicate sequence in which tests are performed

2. SUMMARY OF TESTING

- 2.1 Examination of Product All specimens submitted for testing were selected from normal current production
- 2.2 Termination Resistance, Dry Circuit All termination resistance measurements, taken at 50 milliamperes and 20 millivolts maximum open circuit voltage were less than 10 milliohms.
- 2.3 Insulation Resistance All insulation resistance measurements were greater than 100 megohms
- 2.4 Dielectric Withstand Voltage No dielectric breakdown or flashover occurred
- 2.5 Temperature Rise vs Current All specimens had a temperature rise of less than 40°C above ambient
- 2.6 Current cycling No physical damage occurred as a result of current cycling
- 2.7 Voltage Drop All termination resistance measurements, taken at the specified current, were less than 10 milliohms
- 2.8 Crimp Tensile All crimp tensile values met the minimum requirement for the tested wire size
- 2.9 Terminal Cycling No physical damage occurred as a result of mating and unmating the specimens 10 times
- 2.10 Conductor Crimp Cross Section Cross section views met the requirements for each crimp height
- 2.11 Temperature/Humidity Cycling No evidence of physical damage was visible as a result of temperature/humidity cycling. Samples passed subsequent testing
- 2.12 Temperature/Humidity Cycling USCAR-21 No evidence of physical damage was visible as a result of temperature/humidity cycling. Samples passed subsequent testing
- 2.13 Thermal Shock No evidence of physical damage was visible as a result of thermal shock. Samples passed subsequent testing
- 2.14 Terminal Insertion Insertion forces were less than the 10N maximum requirement
- 2.15 Maintenance Aging, Durability No evidence of physical damage was visible as a result of maintenance aging, durability cycling. Samples passed subsequent testing
- 2.16 Temperature Life No evidence of physical damage was visible as a result of temperature life testing. Samples passed subsequent testing

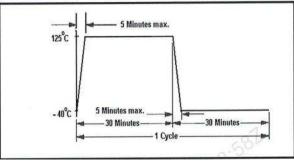
- 2.17 Immersion, TE Spec 109-74-5 No water ingress was found after a 100mm deep immersion for 1 hour
- 2.18 Immersion, ISO 20653:2006E No water ingress was found after a 1 meter deep immersion for 30 minutes
- 2.19 Dust No ingress of dust was observed after testing
- 2.20 High Pressure Spray No water ingress was found after high pressure spray testing. Samples passed subsequent testing
- 2.21 Pressure No air leakage was observed during the internal pressure testing

3. TEST METHODS

- 3.1 Examination of Product Product drawings and test plans were used to examine the specimens visually and functionally
- 3.2 Termination Resistance, Dry Circuit Each sample was subjected to 20-mV maximum open circuit voltage at 100 mA maximum current potential. Measurements were taken using a 4-wire method. Current was forward and reversed bias for each reading
- 3.3 Insulation Resistance Measurements were taken between adjacent contacts of the mated assembly by applying 500 VDC for 15 seconds.
- 3.4 Dielectric Withstand Voltage The test samples were subjected to 500VDC with a 1-minute hold. Measurements were taken between adjacent contacts of the mated assembly. The test potential of 500VDC was applied while monitoring a maximum leakage current of 5.0mA
- 3.5 Temperature Rise vs Current T -Rise above ambient. Start at 1 A and increase by 1 A until 40°C average. 3 consecutive readings within 5 minutes Max. 2°C delta T -Rise before increasing to next current level
- 3.6 Current cycling The power supplies were set to provide 45 minutes of ON time at 125% of test current and 15 minutes of OFF time. Millivolt drop and temperature measurements were recorded twice per week, 30 minutes into the ON cycle
- 3.7 Voltage Drop Each sample was subjected to voltage drop testing before and after current cycling testing.
- 3.8 Crimp Tensile Samples were pulled by the wire until the crimps were fully separated
- 3.9 Terminal Cycling Each terminal pair was completely mated and unmated manually, for a total of 10 cycles as a precondition to current cycling
- 3.10 Conductor Crimp Cross Section Cross-section analysis was performed on all conductor crimps at each crimp height, nominal, min, and max tolerance

3.11 Temperature/Humidity Cycling

Samples were subjected to the following profile for a total of ten (10) cycles


- a. 23C @ 75% for 4 hours
- b. 55C @ 96% for 10 hours
- c. -40C for 2 hours
- d. 125C for 2 hours
- 3.12 Temperature/Humidity Cycling USCAR-21

Samples were subjected to the following profile for a total of four (4) cycles

- a. 16 hours@ 95-98 percent relative humidity at +65°C ± 3°C. Humidity is controlled
- b. 2 hours @ $-40^{\circ}C \pm 3^{\circ}c$
- c. 2 hours @ +85°C ± 3 °C. Humidity not controlled
- d. 4 hours @ +23°C ± 3 °c

3.13 Thermal Shock

All samples were exposed to thermal Shock at -40°C to 125°C for 72 cycles

- 3.14 Terminal Insertion Terminals were inserted in the connector using an Instron machine and the insertion forces were recorded
- 3.15 Maintenance Aging, Durability Insert and remove the terminal from its respective circuit 5 times
- 3.16 Temperature Life All samples were exposed to 105°C for 250 hours.
 3.17 Immersion, TE Spec 109-74-5
- 3.18 Immersion, ISO 20653:2006E Samples were submerged in ambient tab water for 30 minutes at a depth of 1 meter
- 3.19 Dust Test samples were placed in a sealed chamber where they were sprayed with Arizona Road Dust (Fine Grade) for 6 seconds with a 15-minute break
- 3.20 High Pressure Spray Spray at 0°, 30°, 60°, 90° at a distance of 100 to 150 mm
- 3.21 Pressure Samples were submerged in a salt solution (15g NaCl to 1-liter tap water ratio). The samples were then subjected to 7psi pressure before a conditioning loop and 5 psi after a conditioning loop. Samples were observed for 15 seconds to verify there were no bubbles