

MEAS TEMPERATURE SYSTEMS SENSOR (TSYS02D) DIGITAL COMPONENT SENSOR (DCS) DRIVER FOR MicroZed

Digital Temperature Sensor Software Development Kit

Detailed example software and drivers are available that execute directly, without modification, on a number of development boards that support an integrated or synthesized microprocessor. The download contains several source files intended to accelerate customer evaluation and design. The source code is written in standard ANSI C format, and all development documentation including theory/operation, register description, and function prototypes are documented in the interface file.

Specifications

- ◆ Measures temperature from -40°C to 125°C
- ◆ I²C communication
- ◆ Fully calibrated
- ◆ Fast response time
- Very low power consumption

Reference Material

- Detailed information regarding operation of the IC: <u>TSYS02D Datasheet</u>
- Detailed information regarding the Peripheral Module: TSYS02D Peripheral Module
- Complete software sensor evaluation kit for MicroZed: <u>TSYS02D MicroZed.zip</u>

MicroZed is a trademark.

MEAS TSYS01 DCS FOR MicroZed

Digital Temperature Sensor

Drivers & Software

Detailed example software and drivers are available that execute directly, without modification, on a number of development boards that support an integrated or synthesized microprocessor. The download contains several source files intended to accelerate customer evaluation and design. The source code is written in standard ANSI C format, and all development documentation including theory/operation, register description, and function prototypes are documented in the interface file.

Functions Summary

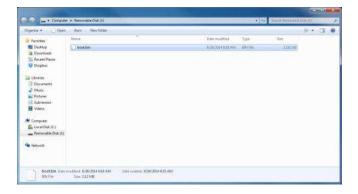
Enumerations	
enum	tsys02d_status { tsys02d_status_ok, tsys02d_status_i2c_transfer_error, tsys02d_status_crc_error }
Functions	
void	tsys02d_init (u32)
	Initializes the AXI address of the AXI IIC Core
enum	tsys02d_reset (void)
tsys02d_status	
	Sends the I ² C reset command to the TSYS02D device.
enum	tsys02d_read_serial_number (void)
tsys02d_status	
	Read serial number values from PROM and perform CRC check on the data for accuracy
enum	tsys02d_read_temperature (float *)
tsys02d_status	
	Reads the temperature ADC value and computes the compensated value in degrees Celsius.

Project Setup

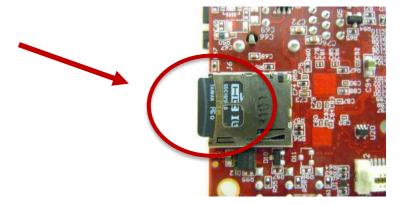
This project is based on the MicroZed board with I/O carrier card. The FPGA hardware and the console application will be loaded via micro SD card.

You will need:

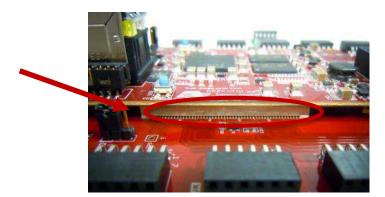
- ◆ MicroZed board
- ◆ I/O carrier card
- ◆ TSYS02D sensor for Digilent Pmod™ board
- ◆ Micro SD card
- ◆ I/O carrier card power adapter
- ◆ USB-to-MicroUSB cable for UART communications
- ◆ A computer with a card reader to write to the SD card and to host a terminal emulator


The following steps will guide you through setting up the hardware platform:

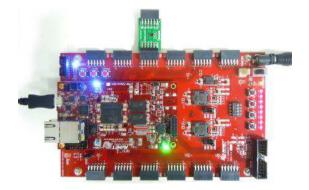
1. First, if you have not connected your computer to a ZedBoard or MicroZed device before, you will likely need to download and install the Silicon Labs CP2104 USB-to_UART driver. The setup guide for installing the driver can be found at the address below: http://www.zedboard.org/sites/default/files/documentations/CP210x Setup Guide 1 2.pdf

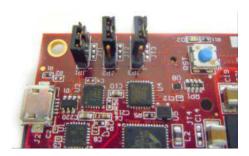

MicroZed, ZedBoard and Digilent Pmod™ are trademarks.

Digital Temperature Sensor


2. Next, attach the SD card to your computer via a card reader or through the built-in SD card slot. Download the "boot.bin" file that pertains to the TSYS01 from the software link and copy it onto the SD card so that it is the only file present on the file system.

3. Safely eject the micro SD card from your computer. Insert the micro SD card into the card slot on the back of the MicroZed board.

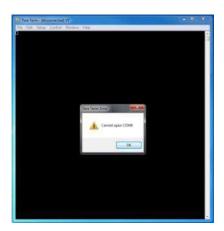

4. Carefully line up the MicroZed board with the I/O carrier card and push them together until snug.

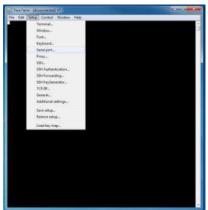


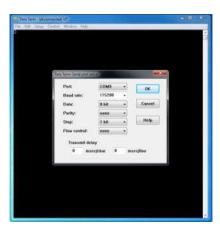
MicroZed and Digilent $Pmod^{TM}$ are trademarks.

Digital Temperature Sensor

5. Connect the TSYS02D digital temperature sensor to the "JC" Digilent Pmod™ port of the I/O carrier card, ensure that jumpers J1, J2, and J3 are configure such that the MicroZed will boot from the SD card on start up, and connect the power adapter to the barrel jack on the I/O carrier card (shown on the bottom). Finally connect the micro-USB cable to the micro-USB port of the MicroZed (shown at the top). The USB cable will facilitate UART transmissions for the console application.

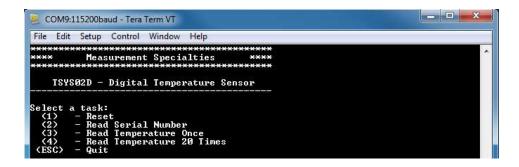



6. Turn on the power to the board with the switch next to the barrel jack. When the board powers up, the MicroZed will briefly illuminate a red LED, which will then turn off after less than a second. Once the FPGA has been successfully programmed by the boot image on the SD card, a blue "Done" LED will illuminate on both the MicroZed and the I/O carrier card. Your hardware should appear as shown below. If the board was powered on before this step, turn the power off and repeat this step.


Launching the Console Application

Now that you have successfully set up your hardware platform, you are ready to run the console application.

- 1. Upon power-on, the console application should already be running. It will be necessary to open a terminal and configure a serial connection to interact with the console application. Do this by opening tera term or a similar terminal emulation software package.
- 2. Tera term may display an error when it starts up if it tries to connect to a COM port where no device is present. It is safe to ignore this warning, so click OK. Next, open the "Setup" menu and click the "Serial Port..." option.
- 3. Now select the appropriate COM port that your MicroZed setup is connected to. If you are not sure which this is, refer to the Device Manager. Configure your serial connection with 115200 Baud, 8 bit data, no parity, 1 stop bit, and no flow control, and then click OK.



MicroZed and Digilent Pmod™ are trademarks.

Digital Temperature Sensor

4. You should now have a live connection open to the console application running on the MicroZed. Press enter and the console application will display the main menu from which you can perform several tasks on the TSYS01 Digital Temperature sensor.

Running the Console Application

The console application is intended to demonstrate the required operations when using the sensor.

- a. After startup, it is a good idea to reset the sensor. This puts it in a known state. Do this by selecting (1) in the console application.
- b. Each sensor is given a serial number that can be read from PROM. The data is CRC checked as it is read in and stored in a global variable. Read the device serial number by selecting (2) in the console application.

Now the sensor and the software are setup. These first two steps only need to be performed once at power up.

- c. The console application option (3) reads the temperature once.
- d. The console application option (4) reads the temperature 20 times at approximately two measurements per second and displays them to the screen in real time.

MicroZed is a trademark

Application Code

This section is intended to provide a basic example of functionality.

```
^{/*} _{\circ} Copyright (c) 2009-2012 Xilinx, Inc. All rights reserved.
      XILINX, Inc.
XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" AS A
COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS
ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR
STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION
IS FREE FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARR RESPONSIBLE
FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION.
XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO
THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO
ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE
FROM CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.
       MEAS_TSYS02D_Main.c: Console Application for Testing the TSYS02D
       This application configures UART 16550 to baud rate 9600. PS7 UART (Zynq) is not initialized by this application, since bootrom/bsp configures it to baud rate 115200
        UART TYPE
                                            BAUD RATE
            uartns550
                                             9600
              uartlite
                                            Configurable only in HW design
115200 (configured by bootrom/bsp)
            ps7_uart
#include <stdio.h>
#include <unistd.h>
#include "platform.h"
#include "xparameters.h"
//#include "sleep.h"
#include "tsys02d.h"
void tsys02d_main_menu(void);
int main()
            char key_input;
           int i;
tsys02d_status stat;
float temperature;
           //Initialize the UART
init_platform();
           //printf("Hello World\n");
           // Set the AXI address of the IIC core
tsys02d_init(XPAR_AXI_IIC_JC_BASEADDR);
           // Display the main menu
tsys02d_main_menu();
            // Infinite loop
            while(1){
                     // Get keyboard input
read(1, (char*)&key_input, 1);
                                                                                                //If the '1' key is pressed
                      if(key_input == '1'){
                                // Send the reset command to the TSYS02D
printf("\n");
printf("Resetting TSYS02D...\n");
stat = tsys02d_reset();
                                // Display the status returned from the reset operation
printf("TSYS02D Reset Complete with status: ");
if(stat==tsys02d_status_ok)
    printf("0k.\n");
if(stat==tsys02d_status_i2c_transfer_error)
    printf("Transfer_Error.\n");
                                // Wait for another key press and then display the main menu again printf("\nPress any key to continue...\n"); read(1, (char*)&key_input, 1); tsys02d_main_menu();
                      }else if(key_input == '2'){
                                                                                                                     // If the '2' key is pressed
                                // Read the serial number from the TSYS02D
printf("\n");
printf("Reading Serial Number...\n");
stat = tsys02d_read_serial_number();
                                // Display status returned from read_prom operation
// and display prom values if successful
printf("Read Serial Number Complete with status: ");
if(stat==tsys02d_status_ok){
    printf("Ok.\n");
    printf("\n");
    printf("\n");
    printf("
    printf("\serial Byte # | Base 10 | (He
    printf("|
```

```
for(i=0;i<8;i++){
    printf("|\t%d\t|</pre>
                                                                                  %5d\t|
                                                                                                            0x%2X\t|\n",i,(unsigned int)tsys02d_serial_number[i],(unsigned int)tsys02d_serial_number[i]);
                       } } else if(stat==tsys02d_status_i2c_transfer_error){
    printf("Transfer Error.\n");
} else if(stat==tsys02d_status_crc_error){
    printf("CRC Error.\n");
}
                        // Wait for another key press and then display the main menu again
printf("\nPress any key to continue...\n");
read(1, (char*)&key_input, 1);
tsy902_main_menu();
                }else if(key_input == '3'){
                                                                                         // If the '3' key is pressed
                        // Read one temperature value
printf("\n");
printf("Reading Temperature Value...\n");
stat = tsys02d_read_temperature(&temperature);
                       // Display the status returned from the read_temperature
// operation and display the temperature if successful
printf("Temperature Read Complete with status: ");
if(stat==tsys02d_status_ok){
    printf("Nok.\n");
    printf("Temperature: %5.2f%cC",temperature,248);
}else if(stat==tsys02d_status_i2c_transfer_error){
    printf("Transfer Error.");
}else if(stat==tsys02d_status_crc_error){
    printf("CRC Error.");
}
                        printf("\n");
                        // Wait for another key press and then display the main menu again
printf("\nPress any key to continue...\n");
read(1, (char*)&key_input, 1);
tsys02d_main_menu();
                }else if(key_input == '4'){
                                                                                         // If the '4' key is pressed
                       // Read 20 temperature values at ~2 per second
printf("\n");
printf("Reading 20 Temperature Values...\n");
for(i=0;i<20;i++){
    stat = tsys02d_read_temperature(&temperature);
    if(stat==tsys02d_status_ok){
        printf("X2d: %5.27kCc",i+1,temperature,248);
    }else if(stat==tsys02d_status_i2c_transfer_error){
        printf("Transfer_Error.");
    }else if(stat==tsys02d_status_crc_error){
        printf("CRC_Error.");
}</pre>
                                printf("\n");
usleep( (500-TSYS02D_CONV_DELAY_MS)*1000 );
                        // Wait for another key press and then display the main menu again printf("\nPress any key to continue...\n"); read(1, (char*)&key_input, 1); tsys02d_main_menu();
                }else if(key_input == 27){ // If the 'ESC' key is pressed
                        // Print done and exit.
printf("Done.\n");
break;
               }else{
                                                                        // If some other key is pressed
                        // Redisplay the main menu
tsys02d_main_menu();
               }
       }
        return 0;
void tsys02d_main_menu(void){
       //Clear the screen
printf("\033[2J");
       return;
}
```

MEAS TSYS01 DCS FOR MicroZed

Digital Temperature Sensor

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

te.com/sensorsolutions

MEAS, TE Connectivity and TE connectivity (logo) are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

Digilent Pmod™ is a trademark of Digilent Inc. MicroZed and ZedBoard are trademarks.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2016 TE Connectivity Ltd. family of companies All Rights Reserved.

PRODUCT SHEET

MEAS France SAS, a TE Connectivity company. Impasse Jeanne Benozzi CS 83 163 31027 Toulouse Cedex 3, FRANCE Tel:+33 (0) 5 820 822 02 Fax: +33 (0) 5 820 821 51 customercare.tlse@te.com