

SENSOR SOLUTIONS /// MEAS MS8607 DCS DEVELOPMENT KIT 07/2016 Page 1

Detailed example software and drivers are available that execute

directly, without modification, on a number of development boards that

support an integrated or synthesized microprocessor. The download

contains several source files intended to accelerate customer

evaluation and design. The source code is written in standard ANSI C

format, and all development documentation including theory/operation,

register description, and function prototypes are documented in the

interface file.

Specifications
 Operating pressure range: 300 to 1200 mbar

 Measures relative humidity from 0% to 100%

 Measures temperature from -40°C to 125°C

 Extended pressure range 10 to 2000 mbar

 Fast response time

 I2C communication

 Very low power consumption

Reference Material
• Detailed information regarding operation of the IC:

 MS8607 Datasheet

• Detailed information regarding the Peripheral Module:

 MS8607 Peripheral Module

• Complete software sensor evaluation kit for Zedboard:

 MS8607_Zedboard.zip

MEAS MS8607 DIGITAL
COMPONENT SENSOR (DCS)
DRIVER FOR ZedBoard
Digital Pressure Sensor
Software Development Kit

http://www.te.com/usa-en/product-CAT-BLPS0018.html
http://www.te.com/usa-en/product-CAT-DCS0008.html
http://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=MS8607_Zedboard&DocType=Specification+Or+Standard&DocLang=English&DocFormat=zip

MEAS MS8607 DCS FOR ZedBoard
Digital Pressure and Humudity Sensor

SENSOR SOLUTIONS /// MEAS MS8607 DCS DEVELOPMENT KIT 07/2016 Page 2

Drivers & Software

Detailed example software and drivers are available that execute directly, without modification, on a number of development
boards that support an integrated or synthesized microprocessor. The download contains several source files intended to
accelerate customer evaluation and design. The source code is written in standard ANSI C format, and all development
documentation including theory/operation, register description, and function prototypes are documented in the interface file.

Functions Summary

Enumerations

enum ms8607_status { ms8607_status_ok, ms8607_status_i2c_transfer_error, ms8607_status_crc_error,
ms8607_status_heater_on_error }

enum ms8607_humidity_resolution { ms8607_humidity_resolution_12b, ms8607_humidity_resolution_8b,
ms8607_humidity_resolution_10b, ms8607_humidity_resolution_11b }

enum ms8607_pressure_resolution { ms8607_pressure_resolution_osr_256, ms8607_pressure_resolution_osr_512,
ms8607_pressure_resolution_osr_1024, ms8607_pressure_resolution_osr_2048,
ms8607_pressure_resolution_osr_4096, ms8607_pressure_resolution_osr_8192 }

enum ms8607_battery_status { ms8607_battery_ok, ms8607_battery_low }

enum ms8607_heater_status { ms8607_heater_off, ms8607_heater_on }

Functions

void

ms8607_init (u32)

Initializes the AXI address of the AXI IIC Core, initializes the internal humidity resolution variable to 12b, and initializes the
internal pressure resolution-oversampling rate to 8192 in order to reflect the sensor’s initial resolution value on reset.

enum
ms8607_status

ms8607_reset (void)

Sends both I2C reset commands to the MS8607 device.

enum
ms8607_status

ms8607_read_prom (void)

Reads the factory calibrated coefficients for use in temperature and pressure conversion.

enum
ms8607_status

ms8607_set_humidity_resolution (enum ms8607_humidity_resolution)

Read the user register from the device, modify its contents to reflect the resolution that is passed in to this function, and
then write the updated user register value to the MS8607 device.

enum
ms8607_status

ms8607_set_pressure_resolution (enum ms8607_pressure_resolution_osr)

Set the over-sampling rate resolution for pressure measurements.

enum
ms8607_status

ms8607_read_temperature_pressure_humidity (float* temperature, float* pressure, float* relative_humidity)

Send the I2C commands to measure temperature, pressure, and humidity.

enum
ms8607_status

ms8607_get_battery_status (ms8607_battery_status* batt_stat)
Send I2C command to read battery status.

enum
ms8607_status

ms8607_get_heater_status (ms8607_battery_status* heat_stat)

Send I2C command to read heater status.

enum
ms8607_status

ms8607_enable_heater (void)

Send I2C commands to perform a read/modify/write operation that will enable the on-chip heater.

enum
ms8607_status

ms8607_disable_heater (void)

Send I2C commands to perform a read/modify/write operation that will disable the on-chip heater.

float ms8607_compute_dew_point (float Tamb, float RHamb)

Compute dew point temperature in degrees C.

Project Setup

This project is based on a ZedBoard. The FPGA hardware and the console application will be loaded via SD card.

You will need:

 ZedBoard
 MS8607 sensor for Digilent Pmod™ board
 SD card
 ZedBoard power adapter

Digilent Pmod™ is a trademark.

file:///C:/Users/Ludo/Downloads/Measurement%20Specialties/MS5637/doxygen/html/ms5637_8h.html%23a48252bb00b601a1c1823320a524df86d
file:///C:/Users/Ludo/Downloads/Measurement%20Specialties/MS5637/doxygen/html/ms5637_8h.html%23a6401fa7c19960ea2d2a8ee2b390d944b
file:///C:/Users/Ludo/Downloads/Measurement%20Specialties/MS5637/doxygen/html/ms5637_8h.html%23a6401fa7c19960ea2d2a8ee2b390d944b
file:///C:/Users/Ludo/Downloads/Measurement%20Specialties/MS5637/doxygen/html/ms5637_8h.html%23a562f1cef01e1479cd0898cb13d96ad51
file:///C:/Users/Ludo/Downloads/Measurement%20Specialties/MS5637/doxygen/html/ms5637_8h.html%23a562f1cef01e1479cd0898cb13d96ad51
file:///C:/Users/Ludo/Downloads/Measurement%20Specialties/MS5637/doxygen/html/ms5637_8h.html%23a1eb6fbfeee6a16a2544353f427086de0
file:///C:/Users/Ludo/Downloads/Measurement%20Specialties/MS5637/doxygen/html/ms5637_8h.html%23a4430128556b8e26aa6e6c65a625412da
file:///C:/Users/Ludo/Downloads/Measurement%20Specialties/MS5637/doxygen/html/ms5637_8h.html%23a4430128556b8e26aa6e6c65a625412da
file:///C:/Users/Ludo/Downloads/Measurement%20Specialties/MS5637/doxygen/html/ms5637_8h.html%23a4430128556b8e26aa6e6c65a625412da
file:///C:/Users/Ludo/Downloads/Measurement%20Specialties/MS5637/doxygen/html/ms5637_8h.html%23a4430128556b8e26aa6e6c65a625412da
file:///C:/Users/Ludo/Downloads/Measurement%20Specialties/MS5637/doxygen/html/ms5637_8h.html%23a4430128556b8e26aa6e6c65a625412da

MEAS MS8607 DCS FOR ZedBoard
Digital Pressure and Humudity Sensor

SENSOR SOLUTIONS /// MEAS MS8607 DCS DEVELOPMENT KIT 07/2016 Page 3

 USB-to-microUSB cable for UART communications
 A computer with a card reader to write to the SD card and to host a terminal emulator

The following steps will guide you through setting up the hardware platform:

1. First, if you have not connected your computer to a ZedBoard or MicroZed device before, you will likely need to download
and install the Silicon Labs CP2104 USB-to_UART driver. The setup guide for installing the driver can be found at the
address below: http://www.zedboard.org/sites/default/files/documentations/CP210x_Setup_Guide_1_2.pdf

2. Next, attach the SD card to your computer via a card reader or through the built-in SD card slot. Download the “boot.bin”
file that pertains to the MS5637 from the software link and copy it onto the SD card so that it is the only file present on the
file system.

3. Safely eject the SD card from your computer. Insert the SD card into the card slot on the back of the ZedBoard.

4. Connect the MS8607 digital pressure sensor to the “JC” Digilent Pmod™ port of the ZedBoard (1), ensure that jumpers
JP7, JP8, JP9, JP10, and JP11 are configured such that the ZedBoard will boot from the SD card on start-up (2), and

1

2

3

4
2

ZedBoard, MicroZed and Digilent Pmod™ are trademarks.

http://www.zedboard.org/sites/default/files/documentations/CP210x_Setup_Guide_1_2.pdf

MEAS MS8607 DCS FOR ZedBoard
Digital Pressure and Humudity Sensor

SENSOR SOLUTIONS /// MEAS MS8607 DCS DEVELOPMENT KIT 07/2016 Page 4

connect the power adapter to the barrel jack on the ZedBoard (3). Finally connect the micro-USB cable to the micro-USB
port of the ZedBoard that is labeled “UART” (4). The USB cable will facilitate UART transmissions for the console
application.

5. Turn on the power to the board with the switch next to the barrel jack. When the board powers up, the ZedBoard will
illuminate a green power LED. After close to 30 seconds, the FPGA will be successfully programmed by the boot image
on the SD card and a blue “Done” LED will illuminate on the ZedBoard. Your hardware should appear as shown below. If
the board was powered on before this step, turn the power off and repeat this step.

ZedBoard and Digilent Pmod™ are trademarks.

MEAS MS8607 DCS FOR ZedBoard
Digital Pressure and Humudity Sensor

SENSOR SOLUTIONS /// MEAS MS8607 DCS DEVELOPMENT KIT 07/2016 Page 5

Launching the Console Application

Now that you have successfully set up your hardware platform, you are ready to run the console application.

1. Upon power-on, the console application should already be running. It will be necessary to open a terminal and configure a

serial connection to interact with the console application. Do this by opening tera term (which can be downloaded from

http://en.sourceforge.jp/projects/ttssh2/releases/) or a similar terminal emulation software package.

2. Tera term may display an error when it starts up if it tries to connect to a COM port where no device is present. It is safe to

ignore this warning, so click OK. Next, open the “Setup” menu and click the “Serial Port…” option.

3. Now select the appropriate COM port that your ZedBoard setup is connected to. If you are not sure which this is, refer to
the Device Manager. Configure your serial connection with 115200 Baud, 8 bit data, no parity, 1 stop bit, and no flow
control, and then click OK.

4. You should now have a live connection open to the console application running on the ZedBoard. Press enter and the
console application will display the main menu from which you can perform several tasks on the MS8607 digital pressure
sensor.

ZedBoard is a trademark.

http://en.sourceforge.jp/projects/ttssh2/releases/

MEAS MS8607 DCS FOR ZedBoard
Digital Pressure and Humudity Sensor

SENSOR SOLUTIONS /// MEAS MS8607 DCS DEVELOPMENT KIT 07/2016 Page 6

Running the Console Application

The console application is intended to demonstrate the required operations when using the sensor.

a. After startup, it is a good idea to reset the sensor. This puts it in a known state. Do this by selecting (1) in the console
application.

b. Each sensor is tested at the factory to determine the variation of the sensor due to fabrication. Calibration coefficients are
stored in the device at that time for later use in calculating the correct output. These coefficient values must be read from
the device and stored in software variables before measurements can be taken. Do this by selecting (2) in the console
application.

Now the sensor and the software are setup and ready to use. These first two steps only need to be performed at power up.

c. The console application option (3) displays a menu that allows the user to select from the four possible humidity resolution

modes of the sensor.

d. The console application option (4) displays a menu that allows the user to select from the six possible pressure over-

sampling resolution modes of the sensor.

e. The console application option (5) reads the temperature, pressure, and relative humidity values and displays each of them

once.

f. The console application option (6) reads the temperature, pressure, and relative humidity 20 times each at approximately

two measurement triplets per second and displays them to the screen in real time.

g. The console application option (7) computes the dew point from the last measured temperature and relative humidity

values.

h. The console application option (8) reads the MS8607’s battery status and displays it to the console.

i. The console application option (9) reads the MS8607’s heater status and displays it to the console.

j. The console application option (0) sends the I2C command to the MS8607 device that enables the on-chip heater.

k. The console application option (A) sends the I2C command to the MS8607 device that disables the on-chip heater.

MEAS MS8607 DCS FOR ZedBoard
Digital Pressure and Humudity Sensor

SENSOR SOLUTIONS /// MEAS MS8607 DCS DEVELOPMENT KIT 07/2016 Page 7

Application Code

This section is intended to provide a basic example of functionality.

/*
 * Copyright (c) 2009-2012 Xilinx, Inc. All rights reserved.
 *
 * Xilinx, Inc.
 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" AS A
 * COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS
 * ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR
 * STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION
 * IS FREE FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE
 * FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION.
 * XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO
 * THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO
 * ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE
 * FROM CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY
 * AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 */

/*
 * MEAS_MS8607_Main.c: Console Application for Testing the MS8607
 *
 * This application configures UART 16550 to baud rate 9600.
 * PS7 UART (Zynq) is not initialized by this application, since
 * bootrom/bsp configures it to baud rate 115200
 *
 * --
 * | UART TYPE BAUD RATE |
 * --
 * uartns550 9600
 * uartlite Configurable only in HW design
 * ps7_uart 115200 (configured by bootrom/bsp)
 */

#include <stdio.h>
#include <unistd.h>
#include "platform.h"
#include "xparameters.h"
#include "ms8607.h"

#define XPAR_AXI_IIC_JC_BASEADDR XPAR_IIC_0_BASEADDR

void ms8607_main_menu(void);

int main()
{

 char key_input;
 int i;
 ms8607_status stat;
 u8 prom_read_flag = 0;
 float temperature;
 float pressure;
 float relative_humidity;
 float dew_point;
 ms8607_battery_status batt_stat;
 ms8607_heater_status heat_stat;

 //Initialize the UART
 init_platform();

 printf("Hello World\n");

 // Set the AXI address of the IIC core
 ms8607_init(XPAR_AXI_IIC_JC_BASEADDR);

 // Display the main menu
 ms8607_main_menu();

 // Infinite loop
 while(1){

 // Get keyboard input
 read(1, (char*)&key_input, 1);

 if(key_input == '1'){ //If the '1' key is pressed

 // Send the reset command to the MS8607
 printf("\n");
 printf("Resetting MS8607...\n");
 stat = ms8607_reset();

 // Display the status returned from the reset operation
 printf("MS8607 Reset Complete with status: ");
 if(stat==ms8607_status_ok)
 printf("Ok.\n");

MEAS MS8607 DCS FOR ZedBoard
Digital Pressure and Humudity Sensor

SENSOR SOLUTIONS /// MEAS MS8607 DCS DEVELOPMENT KIT 07/2016 Page 8

 if(stat==ms8607_status_i2c_transfer_error)
 printf("Transfer Error.\n");

 // Wait for another key press and then display the main menu again
 printf("\nPress any key to continue...\n");
 read(1, (char*)&key_input, 1);
 ms8607_main_menu();

 }else if(key_input == '2'){ // If the '2' key is pressed

 // Read the PROM coefficients from the MS8607
 printf("\n");
 printf("Reading PROM Coefficients...\n");
 stat = ms8607_read_prom();

 // Display status returned from read_prom operation
 // and display prom values if successful
 printf("Read PROM Complete with status: ");
 if(stat==ms8607_status_ok){
 prom_read_flag=1;
 printf("Ok.\n");
 printf("\n");
 printf("___\n");
 printf("| PROM Addr |Coeff (Base 10)| Coeff (Hex) |\n");
 printf("|---------------+---------------+---------------|\n");
 for(i=0;i<7;i++){
 printf("|\t%d\t| %5d\t| 0x%4X\t|\n",i,(unsigned int)ms8607_prom_coeffs[i],(unsigned int)ms8607_prom_coeffs[i]);
 }
 }else if(stat==ms8607_status_i2c_transfer_error){
 printf("Transfer Error.\n");
 }

 // Wait for another key press and then display the main menu again
 printf("\nPress any key to continue...\n");
 read(1, (char*)&key_input, 1);
 ms8607_main_menu();

 }else if(key_input == '3'){ // If the '3' key is pressed

 // Display humidity resolution selection menu
 printf("\n");
 printf("Select a humidity resolution:\n");
 printf(" (1) - 12-Bit Relative Humidity\n");
 printf(" (2) - 11-Bit Relative Humidity\n");
 printf(" (3) - 10-Bit Relative Humidity\n");
 printf(" (4) - 8-Bit Relative Humidity\n");

 // Get keyboard input ignoring keypresses that are not or '1' or '2' or '3' or '4'
 read(1, (char*)&key_input, 1);
 while(key_input!='1' && key_input!='2' && key_input!='3' && key_input!='4'){
 read(1, (char*)&key_input, 1);
 }

 if(key_input == '1'){ // If the '1' key is pressed
 // Set humidity resolution to 12-bits
 stat = ms8607_set_humidity_resolution(ms8607_humidity_resolution_12b);
 printf("\nSetting MS8607 Humidity Resolution to 12-bits\n");
 }else if(key_input == '2'){ // If the '2' key is pressed
 // Set humidity resolution to 11-bits
 stat = ms8607_set_humidity_resolution(ms8607_humidity_resolution_11b);
 printf("\nSetting MS8607 Humidity Resolution to 11-bits\n");
 }else if(key_input == '3'){ // If the '3' key is pressed
 // Set humidity resolution to 10-bits
 stat = ms8607_set_humidity_resolution(ms8607_humidity_resolution_10b);
 printf("\nSetting MS8607 Humidity Resolution to 10-bits\n");
 }else if(key_input == '4'){ // If the '4' key is pressed
 // Set humidity resolution to 8-bits
 stat = ms8607_set_humidity_resolution(ms8607_humidity_resolution_8b);
 printf("\nSetting MS8607 Humidity Resolution to 8-bits\n");
 }

 // Display the status returned from the set resolution operation
 printf("MS8607 Set Humidity Resolution Complete with status: ");
 if(stat==ms8607_status_ok)
 printf("Ok.\n");
 if(stat==ms8607_status_i2c_transfer_error)
 printf("Transfer Error.\n");

 // Wait for another key press and then display the main menu again
 printf("\nPress any key to continue...\n");
 read(1, (char*)&key_input, 1);
 ms8607_main_menu();

 }else if(key_input == '4'){ // If the '4' key is pressed

 // Display resolution selection menu
 printf("\n");
 printf("Select a pressure/temperature resolution (over-sampling rate):\n");
 printf(" (1) - 256\n");
 printf(" (2) - 512\n");

MEAS MS8607 DCS FOR ZedBoard
Digital Pressure and Humudity Sensor

SENSOR SOLUTIONS /// MEAS MS8607 DCS DEVELOPMENT KIT 07/2016 Page 9

 printf(" (3) - 1024\n");
 printf(" (4) - 2048\n");
 printf(" (5) - 4096\n");
 printf(" (6) - 8192\n");

 // Get keyboard input ignoring keypresses that are not '1' or '2' or '3' or '4' or '5' or '6'
 read(1, (char*)&key_input, 1);
 while(key_input!='1' && key_input!='2' && key_input!='3' && key_input!='4' && key_input!='5' && key_input!='6'){
 read(1, (char*)&key_input, 1);
 }

 if(key_input == '1'){ // If the '1' key is pressed
 // Set OSR to 256
 ms8607_pressure_res = ms8607_pressure_resolution_osr_256;
 printf("\nSet MS8607 Over-Sampling Rate to 256\n");
 }else if(key_input == '2'){ // If the '2' key is pressed
 // Set OSR to 512
 ms8607_pressure_res = ms8607_pressure_resolution_osr_512;
 printf("\nSet MS8607 Over-Sampling Rate to 512\n");
 }else if(key_input == '3'){ // If the '3' key is pressed
 // Set OSR to 1024
 ms8607_pressure_res = ms8607_pressure_resolution_osr_1024;
 printf("\nSet MS8607 Over-Sampling Rate to 1024\n");
 }else if(key_input == '4'){ // If the '4' key is pressed
 // Set OSR to 2048
 ms8607_pressure_res = ms8607_pressure_resolution_osr_2048;
 printf("\nSet MS8607 Over-Sampling Rate to 2048\n");
 }else if(key_input == '5'){ // If the '5' key is pressed
 // Set OSR to 4096
 ms8607_pressure_res = ms8607_pressure_resolution_osr_4096;
 printf("\nSet MS8607 Over-Sampling Rate to 4096\n");
 }else if(key_input == '6'){ // If the '6' key is pressed
 // Set OSR to 8192
 ms8607_pressure_res = ms8607_pressure_resolution_osr_8192;
 printf("\nSet MS8607 Over-Sampling Rate to 8192\n");
 }

 // Wait for another key press and then display the main menu again
 printf("\nPress any key to continue...\n");
 read(1, (char*)&key_input, 1);
 ms8607_main_menu();

 }else if(key_input == '5'){ // If the '5' key is pressed

 if(prom_read_flag==0){ // PROM was not yet read--cannot read temperature, pressure, and humidity yet
 printf("PROM Coefficients have not yet been read. Cannot complete temperature/pressure read.\n");
 }else{ // PROM has been read--continue on to read temperature, pressure, and humidity

 // Read Temperature, Pressure, and Relative Humidity once
 printf("\n");
 printf("Reading Temperature, Pressure, and Relative Humidity...\n");
 stat = ms8607_read_temperature_pressure_humidity(&temperature, &pressure, &relative_humidity);

 // Display the status returned from the read_temperature_pressure_humidity
 // operation and display the temperature, pressure, and humidity if successful
 printf("Temperature, Pressure, and Relative Humidity Read Complete with status: ");
 if(stat==ms8607_status_ok){
 printf("Ok.\n");
 printf("Temperature : %5.2f%cC, \tPressure : %5.1fhPa, \tRelative Humidity :
%4.1f%%",temperature,248,pressure,relative_humidity);
 }else if(stat==ms8607_status_i2c_transfer_error){
 printf("Transfer Error.");
 }else if(stat==ms8607_status_crc_error){
 printf("CRC Error.");
 }
 printf("\n");

 }

 // Wait for another key press and then display the main menu again
 printf("\nPress any key to continue...\n");
 read(1, (char*)&key_input, 1);
 ms8607_main_menu();

 }else if(key_input == '6'){ // If the '6' key is pressed

 if(prom_read_flag==0){ // PROM was not yet read--cannot read temperature, pressure, and humidity
 printf("PROM Coefficients have not yet been read. Cannot complete temperature/pressure/humidity read.\n");
 }else{ // PROM has been read--continue on to read temperature, pressure, and humidity

 // Read 20 temperature and relative humidity values at ~2 per second
 printf("\n");
 printf("Reading 20 Temperature and Relative Humidity Values...\n");
 for(i=0;i<20;i++){
 stat = ms8607_read_temperature_pressure_humidity(&temperature, &pressure, &relative_humidity);
 printf("%2d: ",i+1);
 if(stat==ms8607_status_ok){
 printf("%5.2f%cC, \t%5.1fhPa, \t%4.1f%%",temperature,248,pressure,relative_humidity);
 }else if(stat==ms8607_status_i2c_transfer_error){
 printf("Transfer Error.");
 }else if(stat==ms8607_status_crc_error){

MEAS MS8607 DCS FOR ZedBoard
Digital Pressure and Humudity Sensor

SENSOR SOLUTIONS /// MEAS MS8607 DCS DEVELOPMENT KIT 07/2016 Page 10

 printf("CRC Error.");
 }
 printf("\n");
 usleep((500-MS8607_OSR_8192_CONV_DELAY_MS)*1000);
 }

 }

 // Wait for another key press and then display the main menu again
 printf("\nPress any key to continue...\n");
 read(1, (char*)&key_input, 1);
 ms8607_main_menu();

 }else if(key_input == '7'){ //If the '7' key is pressed

 // Compute Dew Point from last read Temperature and Relative Humidity values
 printf("\n");
 printf("Computing Dew Point from last read Temperature and Relative Humidity values...\n");
 stat = ms8607_compute_dew_point(temperature, relative_humidity, &dew_point);
 if(stat == ms8607_status_i2c_transfer_error){
 printf("Could not read heater status.\n");
 }else if(stat == ms8607_status_heater_on_error){
 printf("Cannot calculate dew point while heater is on.\n");
 }else if(stat == ms8607_status_ok){
 printf("Dew Point : %5.2f%cC",dew_point,248);
 }

 // Wait for another key press and then display the main menu again
 printf("\nPress any key to continue...\n");
 read(1, (char*)&key_input, 1);
 ms8607_main_menu();

 }else if(key_input == '8'){ //If the '8' key is pressed

 // Get Battery Status
 printf("\n");
 printf("Getting Battery Status...\n");
 stat = ms8607_get_battery_status(&batt_stat);

 // Display the status returned from the battery status check operation
 printf("Get Battery Status Check Complete with status: ");
 if(stat==ms8607_status_ok){
 printf("Ok.\n");
 printf("Battery ");
 if(batt_stat == ms8607_battery_ok){
 printf("Ok.\n");
 }else{
 printf("Low.\n");
 }
 }
 if(stat==ms8607_status_i2c_transfer_error){
 printf("Transfer Error.\n");
 }

 // Wait for another key press and then display the main menu again
 printf("\nPress any key to continue...\n");
 read(1, (char*)&key_input, 1);
 ms8607_main_menu();

 }else if(key_input == '9'){ //If the '9' key is pressed

 // Get Heater Status
 printf("\n");
 printf("Getting Heater Status...\n");
 stat = ms8607_get_heater_status(&heat_stat);

 // Display the status returned from the heater status check operation
 printf("Get Heater Status Check Complete with status: ");
 if(stat==ms8607_status_ok){
 printf("Ok.\n");
 printf("Heater ");
 if(heat_stat == ms8607_heater_on){
 printf("On.\n");
 }else{
 printf("Off.\n");
 }
 }else if(stat==ms8607_status_i2c_transfer_error)
 printf("Transfer Error.\n");

 // Wait for another key press and then display the main menu again
 printf("\nPress any key to continue...\n");
 read(1, (char*)&key_input, 1);
 ms8607_main_menu();

 }else if(key_input == '0'){ //If the '0' key is pressed

 // Enable heater
 printf("\n");
 printf("Enabling Heater...\n");
 stat = ms8607_enable_heater();

MEAS MS8607 DCS FOR ZedBoard
Digital Pressure and Humudity Sensor

SENSOR SOLUTIONS /// MEAS MS8607 DCS DEVELOPMENT KIT 07/2016 Page 11

 // Display the status returned from the enable heater operation
 printf("Enable Heater Operation Complete with status: ");
 if(stat==ms8607_status_ok)
 printf("Ok.\n");
 if(stat==ms8607_status_i2c_transfer_error)
 printf("Transfer Error.\n");

 // Wait for another key press and then display the main menu again
 printf("\nPress any key to continue...\n");
 read(1, (char*)&key_input, 1);
 ms8607_main_menu();

 }else if(key_input == 'A' || key_input == 'a'){ //If the 'A' key is pressed

 // Disable heater
 printf("\n");
 printf("Disabling Heater...\n");
 stat = ms8607_disable_heater();

 // Display the status returned from the disable heater operation
 printf("Disable Heater Operation Complete with status: ");
 if(stat==ms8607_status_ok)
 printf("Ok.\n");
 if(stat==ms8607_status_i2c_transfer_error)
 printf("Transfer Error.\n");

 // Wait for another key press and then display the main menu again
 printf("\nPress any key to continue...\n");
 read(1, (char*)&key_input, 1);
 ms8607_main_menu();

 }else if(key_input == 27){ // If the 'ESC' key is pressed

 // Print done and exit.
 printf("Done.\n");
 break;

 }else{ // If some other key is pressed

 // Redisplay the main menu
 ms8607_main_menu();

 }
 }

 return 0;

}

void ms8607_main_menu(void){

 //Clear the screen
 printf("\033[2J");

 //Display the main menu
 printf("***\n");
 printf("**** Measurement Specialties ****\n");
 printf("***\n");

 printf("\n");
 printf(" MS8607 - PTH Combined Sensor \n");
 printf("---\n");

 printf("\n");
 printf("Select a task:\n");
 printf(" (1) - Reset\n");
 printf(" (2) - Read PROM Coefficients\n");
 printf(" (3) - Set Humidity Resolution\n");
 printf(" (4) - Set Temperature/Pressure Resolution\n");
 printf(" (5) - Read Temperature, Pressure, and Relative Humidity Once\n");
 printf(" (6) - Read Temperature, Pressure, and Relative Humidity 20 Times\n");
 printf(" (7) - Compute Dew Point\n");
 printf(" (8) - Get Battery Status\n");
 printf(" (9) - Get Heater Status\n");
 printf(" (0) - Enable Heater\n");
 printf(" (A) - Disable Heater\n");
 printf(" (ESC) - Quit\n");
 printf("\n");

 return;
}

MEAS MS8607 DCS FOR ZedBoard
Digital Pressure and Humudity Sensor

SENSOR SOLUTIONS /// MEAS MS8607 DCS DEVELOPMENT KIT 07/2016 Page 12

PRODUCT SHEET

MEAS France SAS,
a TE Connectivity company.
Impasse Jeanne Benozzi CS 83 163
31027 Toulouse Cedex 3, FRANCE
Tel:+33 (0) 5 820 822 02
Fax: +33 (0) 5 820 821 51
customercare.tlse@te.com

te.com/sensorsolutions
.

MEAS, TE Connectivity and TE connectivity (logo) are trademarks. All other logos, products and/or company names
referred to herein might be trademarks of their respective owners.

Digilent Pmod™ is a trademark of Digilent Inc.
MicroZed and ZedBoard are trademarks

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes
only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and
disclaims any liability in connection with its use. TE Connectivity‘s obligations shall only be as set forth in TE
Connectivity‘s Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any
incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE
Connectivity products should make their own evaluation to determine the suitability of each such product for the specific
application.

© 2016 TE Connectivity Ltd. family of companies All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

mailto:customercare.tlse@te.com

	MEAS MS8607 digital component sensor (DCS) driver for zedboard
	Digital Pressure Sensor

