

SENSOR SOLUTIONS /// MEAS KMA36 DCS DEVELOPMENT KIT 07/2016 Page 1

MEAS KMA36 DIGITAL
COMPONENT SENSOR (DCS)
DRIVER FOR MicroZed
Digital Position Sensor
Software Development Kit

Detailed example software and drivers are available that execute

directly, without modification, on a number of development boards that

support an integrated or synthesized microprocessor. The download

contains several source files intended to accelerate customer

evaluation and design. The source code is written in standard ANSI C

format, and all development documentation including theory/operation,

register description, and function prototypes are documented in the

interface file.

Specifications
 Contactless angle measurement from 0° to 360°

 Programmable resolution up to 13 bits

 I2C communication

 Very low hysteresis

 Incremental model

 Programmable zero position

 Low power consumption

Reference Material

 Detailed information regarding operation of the IC:

KMA36 Datasheet

 Detailed information regarding the Peripheral Module:

KMA36 Peripheral Module

 Complete software sensor evaluation kit for MicroZed:

KMA36_MicroZed.zip

MicroZed is a trademark.

http://www.te.com/usa-en/product-CAT-MRS0001.html
http://www.te.com/usa-en/product-CAT-DCS0011.html
http://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=KMA36_MicroZed&DocType=Specification+Or+Standard&DocLang=English&DocFormat=zip

MEAS KMA36 DCS FOR MicroZed
 Digital Position Sensor

SENSOR SOLUTIONS /// MEAS KMA36 DCS DEVELOPMENT KIT 07/2016 Page 2

Drivers & Software

Detailed example software and drivers are available that execute directly, without modification, on a number of development
boards that support an integrated or synthesized microprocessor. The download contains several source files intended to
accelerate customer evaluation and design. The source code is written in standard ANSI C format, and all development
documentation including theory/operation, register description, and function prototypes are documented in the interface file.

Functions Summary

Enumerations

enum kma36_address { kma36_i2c_address_GND, kma36_i2c_address_DCOILP, kma36_i2c_address_DCOILN,
kma36_i2c_address_DVCC_SE, kma36_i2c_address_VCC }

enum kma36_status { kma36_status_ok, kma36_status_i2c_transfer_error, kma36_status_crc_error }

enum htu21d_battery_status { htu21d_battery_ok, htu21d_battery_low } kma36_oversampling { kma36_oversampling_2,
kma36_oversampling_4, kma36_oversampling_8, kma36_oversampling_32 }

Functions

void

kma36_init (u32)

Initializes the AXI address of the AXI IIC Core, initializes the I2C address to 0x59 (GND).

enum
kma36_status

kma36_set_i2c_address

(enum kma36_address) Sets the configurable I2C address of the KMA36 device.

enum
kma36_status

kma36_read_angle (float* angle)

Reads the magnetic angle data in degrees.

enum
kma36_status

kma36_sleep_enter (void)

Request KMA36 to enter sleep mode.

enum
kma36_status

kma36_sleep_exit (void)

Request KMA36 to exit sleep mode.

enum
kma36_status

kma36_enable_low_power_mode (void)

Request KMA36 to enable low power mode. In this mode, only 180 degree measurements are possible.

enum
kma36_status

kma36_disable_low_power_mode (void)

Request KMA36 to disable low power mode.

enum
kma36_status

kma36_enable_counter (void)

Request KMA36 to enable full turn counting.

enum
kma36_status

kma36_disable_counter (void)

Request KMA36 to disable full turn counting.

enum
kma36_status

kma36_enable_fast_rate (void)

Request KMA36 to enable fast measurement update rate. In fast mode, measurement accuracy is reduced. Update rate =
1 / (1.4ms * oversampling / const)

enum
kma36_status

kma36_disable_fast_rate (void)

Request KMA36 to disable fast measurement update rate.

enum
kma36_status

kma36_set_accuracy (enum kma36_oversampling)

Set KMA36 accuracy. Resolution impacts the measurement update rate. Update rate = 1 / (1.4ms * oversampling / const)

enum
kma36_status

kma36_set_resolution (u16 res)

Set KMA36 resolution.

MEAS KMA36 DCS FOR MicroZed
 Digital Position Sensor

SENSOR SOLUTIONS /// MEAS KMA36 DCS DEVELOPMENT KIT 07/2016 Page 3

Project Setup

This project is based on the MicroZed board with I/O carrier card. The FPGA hardware and the console application will be

loaded via micro SD card.

You will need:

• MicroZed board

• I/O carrier card

• KMA36 sensor for Digilent Pmod™ board

• Micro SD card

• I/O carrier card power adapter

• USB-to-MicroUSB cable for UART communications

• A computer with a card reader to write to the SD card and to host a terminal emulator

The following steps will guide you through setting up the hardware platform:

1. First, if you have not connected your computer to a ZedBoard or MicroZed device before, you will likely need to download

and install the Silicon Labs CP2104 USB-to_UART driver. The setup guide for installing the driver can be found at the

address below: http://www.zedboard.org/sites/default/files/documentations/CP210x_Setup_Guide_1_2.pdf

2. Next, attach the SD card to your computer via a card reader or through the built-in SD card slot. Download the “boot.bin”
file that pertains to the KMA36 from the MicroZed software link and copy it onto the SD card so that it is the only file

present on the file system.

3. Safely eject the micro SD card from your computer. Insert the micro SD card into the card slot on the back of the MicroZed

board.

MicroZed, ZedBoard and Digilent Pmod™ are trademarks.

MEAS KMA36 DCS FOR MicroZed
 Digital Position Sensor

SENSOR SOLUTIONS /// MEAS KMA36 DCS DEVELOPMENT KIT 07/2016 Page 4

4. Carefully line up the MicroZed board with the I/O carrier card and push them together until snug.

5. Connect the KMA36 digital magnetic encoder sensor to the “JC” Digilent Pmod™ port of the I/O carrier card, ensure that

jumpers J1, J2, and J3 are configure such that the MicroZed will boot from the SD card on start up, and connect the power

adapter to the barrel jack on the I/O carrier card (shown on the right). Finally connect the micro-USB cable to the micro-

USB port of the MicroZed (shown at the left). The USB cable will facilitate UART transmissions for the console application.

6. Turn on the power to the board with the switch next to the barrel jack. When the board powers up, the MicroZed will briefly

illuminate a red LED, which will then turn off after less than a second. Once the FPGA has been successfully programmed

by the boot image on the SD card, a blue “Done” LED will illuminate on both the MicroZed and the I/O carrier card. Your

hardware should appear as shown below. If the board was powered on before this step, turn the power off and repeat this

step.

1

2

3

4

2

MicroZed and Digilent Pmod™ are trademarks.

MEAS KMA36 DCS FOR MicroZed
 Digital Position Sensor

SENSOR SOLUTIONS /// MEAS KMA36 DCS DEVELOPMENT KIT 07/2016 Page 5

Launching the Console Application

Now that you have successfully set up your hardware platform, you are ready to run the console application.

1. Upon power-on, the console application should already be running. It will be necessary to open a terminal and configure

a serial connection to interact with the console application. Do this by opening tera term (which can be downloaded from

http://en.sourceforge.jp/projects/ttssh2/releases/) or a similar terminal emulation software package.

2. Tera Term may display an error when it starts up if it tries to connect to a COM port where no device is present. It is safe

to ignore this warning, so click OK. Next, open the “Setup” menu and click the “Serial Port…” option.

3. Safely eject the micro SD card from your computer. Insert the micro SD card into the card slot on the back of the

MicroZed board.

MicroZed is a trademark.

http://en.sourceforge.jp/projects/ttssh2/releases/

MEAS KMA36 DCS FOR MicroZed
 Digital Position Sensor

SENSOR SOLUTIONS /// MEAS KMA36 DCS DEVELOPMENT KIT 07/2016 Page 6

4. Carefully line up the MicroZed board with the I/O carrier card and push them together until snug.

5. Connect the KMA36 digital position sensor to the “JC” Digilent Pmod™ port of the I/O carrier card, ensure that jumpers

J1, J2, and J3 are configure such that the MicroZed will boot from the SD card on start up, and connect the power adapter

to the barrel jack on the I/O carrier card (shown on the bottom). Finally connect the micro-USB cable to the micro-USB

port of the MicroZed (shown at the top). The USB cable will facilitate UART transmissions for the console application.

6. Turn on the power to the board with the switch next to the barrel jack. When the board powers up, the MicroZed will

briefly illuminate a red LED, which will then turn off after less than a second. Once the FPGA has been successfully

programmed by the boot image on the SD card, a blue “Done” LED will illuminate on both the MicroZed and the I/O carrier

card. Your hardware should appear as shown below. If the board was powered on before this step, turn the power off and

repeat this step.

MicroZed and Digilent Pmod™ are trademarks.

MEAS KMA36 DCS FOR MicroZed
 Digital Position Sensor

SENSOR SOLUTIONS /// MEAS KMA36 DCS DEVELOPMENT KIT 07/2016 Page 7

7. Now select the appropriate COM port that your MicroZed setup is connected to. If you are not sure which this is, refer to

the Device Manager. Configure your serial connection with 115200 Baud, 8 bit data, no parity, 1 stop bit, and no flow

control, and then click OK.

8. You should now have a live connection open to the console application running on the MicroZed. Press enter and the

console application will display the main menu from which you can perform several tasks on the KMA36 digital magnetic

encoder sensor.

MicroZed is a trademark.

MEAS KMA36 DCS FOR MicroZed
 Digital Position Sensor

SENSOR SOLUTIONS /// MEAS KMA36 DCS DEVELOPMENT KIT 07/2016 Page 8

Running the Console Application

The console application is intended to demonstrate the required operations when using the sensor.

a. The KMA36 software must have an I2C address set or it may not function. Do this by selecting (1) and selecting the

correct address BEFORE performing any other options.

Now the sensor and the software are setup and ready to use. This first step only needs to be performed at power up.

a. The console application option (2) reads the magnetic rotation in degrees and displays it to the console.

b. The console application option (3) sends the I2C command to enter the KMA36 into sleep mode.

c. The console application option (4) sends the I2C command to exit sleep mode.

d. The console application option (5) sends the I2C command to enable low power mode.

e. The console application option (6) sends the I2C command to disable low power mode.

f. The console application option (7) sends the I2C command to enable counter.

g. The console application option (8) sends the I2C command to disable counter.

h. The console application option (9) sends the I2C command to enable fast rate.

i. The console application option (0) sends the I2C command to disable fast rate.

j. The console application option (A) displays a menu which allows the user to select from one of four possible over-

sampling rates.

k. The console application option (B) displays a prompt for the user to enter an integer between 1 and 32767 to be written to

the KMA36’s 16-bit resolution register.

Application Code

This section is intended to provide a basic example of functionality.

/*

 * Copyright (c) 2009-2012 Xilinx, Inc. All rights reserved.

 *

 * Xilinx, Inc.

 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" AS A

 * COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS

 * ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR

 * STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION

 * IS FREE FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE

 * FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION.

 * XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO

 * THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO

 * ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE

 * FROM CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY

 * AND FITNESS FOR A PARTICULAR PURPOSE.

 *

 */

/*

 * MEAS_KMA36_Main.c: Console Application for Testing the KMA36

 *

 * This application configures UART 16550 to baud rate 9600.

 * PS7 UART (Zynq) is not initialized by this application, since

 * bootrom/bsp configures it to baud rate 115200

 *

 * --

 * | UART TYPE BAUD RATE |

 * --

 * uartns550 9600

 * uartlite Configurable only in HW design

 * ps7_uart 115200 (configured by bootrom/bsp)

MEAS KMA36 DCS FOR MicroZed
 Digital Position Sensor

SENSOR SOLUTIONS /// MEAS KMA36 DCS DEVELOPMENT KIT 07/2016 Page 9

 */

#include <stdio.h>

#include <unistd.h>

#include "platform.h"

#include "xparameters.h"

#include "kma36.h"

void kma36_main_menu(void);

int main()

{

 char key_input;

 u8 address_set_flag=0;

 kma36_status stat;

 float angle;

 u32 res=0;

 //Initialize the UART

 init_platform();

 // Set the AXI address of the IIC core and

 // initialize the i2c address to 0x77

 kma36_init(XPAR_AXI_IIC_JC_BASEADDR);

 // Display the main menu

 kma36_main_menu();

 // Infinite loop

 while(1){

 // Get keyboard input

 read(1, (char*)&key_input, 1);

 if(key_input == '1'){ //If the '1' key is pressed

 // Display address selection menu

 printf("\n");

 printf("Select an address:\n");

 printf(" (0) - A0 is tied to GND (Address=0x59)\n");

 printf(" (1) - A0 is tied to DCOILP (Address=0x5A)\n");

 printf(" (2) - A0 is tied to DCOILN (Address=0x5B)\n");

 printf(" (3) - A0 is tied to DVCC_SE (Address=0x5C)\n");

 printf(" (4) - A0 is tied to VCC (Address=0x5D)\n");

 // Get keyboard input ignoring keypresses that are not '0' or '1' or '2' or '3' or '4'

 read(1, (char*)&key_input, 1);

 while(key_input!='0' && key_input!='1' && key_input!='2' && key_input!='3' && key_input!='4'){

 read(1, (char*)&key_input, 1);

 }

 if(key_input == '0'){ // If the '0' key is pressed

 // Set i2c address to 0x59

 kma36_set_i2c_address(kma36_i2c_address_GND);

 printf("Set KMA36 I2C Address to 0x59 (A0 tied to GND)\n");

 }else if(key_input == '1'){ // If the '1' key is pressed

 // Set i2c address to 0x5A

 kma36_set_i2c_address(kma36_i2c_address_DCOILP);

 printf("Set KMA36 I2C Address to 0x5A (A0 tied to DCOILP)\n");

 }else if(key_input == '2'){ // If the '2' key is pressed

 // Set i2c address to 0x5B

 kma36_set_i2c_address(kma36_i2c_address_DCOILN);

 printf("Set KMA36 I2C Address to 0x5B (A0 tied to DCOILN)\n");

 }else if(key_input == '3'){ // If the '3' key is pressed

 // Set i2c address to 0x5C

 kma36_set_i2c_address(kma36_i2c_address_DVCC_SE);

 printf("Set KMA36 I2C Address to 0x5C (A0 tied to DVCC_SE)\n");

 }else if(key_input == '4'){ // If the '4' key is pressed

 // Set i2c address to 0x5D

 kma36_set_i2c_address(kma36_i2c_address_VCC);

MEAS KMA36 DCS FOR MicroZed
 Digital Position Sensor

SENSOR SOLUTIONS /// MEAS KMA36 DCS DEVELOPMENT KIT 07/2016 Page 10

 printf("Set KMA36 I2C Address to 0x5D (A0 tied to VCC)\n");

 }

 address_set_flag = 1;

 printf("Reading initial register state...\n");

 stat = kma36_read_regs();

 if(stat==kma36_status_ok){

 printf("Register read successful.\n");

 }else{

 printf("Register read failed.\n");

 }

 // Wait for another key press and then display the main menu again

 printf("\nPress any key to continue...\n");

 read(1, (char*)&key_input, 1);

 kma36_main_menu();

 }else if(key_input == '2'){ //If the '2' key is pressed

 if(address_set_flag==0){ // Address was not set yet--cannot perform this operation

 printf("KMA36 I2C Address has not yet been set. Cannot complete this operation.\n");

 }else{

 // Send the angle read command to the KMA36

 printf("\n");

 printf("Reading current angle from KMA36...\n");

 stat = kma36_read_angle(&angle);

 // Display the status returned from the angle read operation

 printf("KMA36 Angle Read Complete with status: ");

 if(stat==kma36_status_ok)

 printf("Ok.\n");

 printf("Angle: %4.1f%c\n",angle,248);

 if(stat==kma36_status_i2c_transfer_error)

 printf("Transfer Error.\n");

 }

 // Wait for another key press and then display the main menu again

 printf("\nPress any key to continue...\n");

 read(1, (char*)&key_input, 1);

 kma36_main_menu();

 }else if(key_input == '3'){ // If the '3' key is pressed

 if(address_set_flag==0){ // Address was not set yet--cannot perform this operation

 printf("KMA36 I2C Address has not yet been set. Cannot complete this operation.\n");

 }else{

 // Send request to KMA36 to enter sleep mode

 printf("\n");

 printf("KMA36 Entering Sleep Mode...\n");

 stat = kma36_sleep_enter();

 // Display status returned from enter sleep mode operation

 printf("Enter Sleep Mode Complete with status: ");

 if(stat==kma36_status_ok)

 printf("Ok.\n");

 if(stat==kma36_status_i2c_transfer_error)

 printf("Transfer Error.\n");

 }

 // Wait for another key press and then display the main menu again

 printf("\nPress any key to continue...\n");

 read(1, (char*)&key_input, 1);

 kma36_main_menu();

 }else if(key_input == '4'){ // If the '4' key is pressed

 if(address_set_flag==0){ // Address was not set yet--cannot perform this operation

 printf("KMA36 I2C Address has not yet been set. Cannot complete this operation.\n");

 }else{

 // Send request to KMA36 to exit sleep mode

 printf("\n");

MEAS KMA36 DCS FOR MicroZed
 Digital Position Sensor

SENSOR SOLUTIONS /// MEAS KMA36 DCS DEVELOPMENT KIT 07/2016 Page 11

 printf("KMA36 Exiting Sleep Mode...\n");

 stat = kma36_sleep_exit();

 // Display status returned from exit sleep mode operation

 printf("Exit Sleep Mode Complete with status: ");

 if(stat==kma36_status_ok)

 printf("Ok.\n");

 if(stat==kma36_status_i2c_transfer_error)

 printf("Transfer Error.\n");

 }

 // Wait for another key press and then display the main menu again

 printf("\nPress any key to continue...\n");

 read(1, (char*)&key_input, 1);

 kma36_main_menu();

 }else if(key_input == '5'){ // If the '5' key is pressed

 if(address_set_flag==0){ // Address was not set yet--cannot perform this operation

 printf("KMA36 I2C Address has not yet been set. Cannot complete this operation.\n");

 }else{

 // Send request to KMA36 to enable low power mode

 printf("\n");

 printf("KMA36 Enabling Low Power Mode...\n");

 stat = kma36_enable_low_power_mode();

 // Display status returned from enable low power operation

 printf("Enable Low Power Mode Complete with status: ");

 if(stat==kma36_status_ok)

 printf("Ok.\n");

 if(stat==kma36_status_i2c_transfer_error)

 printf("Transfer Error.\n");

 }

 // Wait for another key press and then display the main menu again

 printf("\nPress any key to continue...\n");

 read(1, (char*)&key_input, 1);

 kma36_main_menu();

 }else if(key_input == '6'){ // If the '6' key is pressed

 if(address_set_flag==0){ // Address was not set yet--cannot perform this operation

 printf("KMA36 I2C Address has not yet been set. Cannot complete this operation.\n");

 }else{

 // Send request to KMA36 to disable low power mode

 printf("\n");

 printf("KMA36 Disabling Low Power Mode...\n");

 stat = kma36_disable_low_power_mode();

 // Display status returned from disable low power operation

 printf("Disable Low Power Mode Complete with status: ");

 if(stat==kma36_status_ok)

 printf("Ok.\n");

 if(stat==kma36_status_i2c_transfer_error)

 printf("Transfer Error.\n");

 }

 // Wait for another key press and then display the main menu again

 printf("\nPress any key to continue...\n");

 read(1, (char*)&key_input, 1);

 kma36_main_menu();

 }else if(key_input == '7'){ // If the '7' key is pressed

 if(address_set_flag==0){ // Address was not set yet--cannot perform this operation

 printf("KMA36 I2C Address has not yet been set. Cannot complete this operation.\n");

 }else{

 // Send request to KMA36 to enable counter

 printf("\n");

 printf("KMA36 Enabling Counter...\n");

 stat = kma36_enable_counter();

MEAS KMA36 DCS FOR MicroZed
 Digital Position Sensor

SENSOR SOLUTIONS /// MEAS KMA36 DCS DEVELOPMENT KIT 07/2016 Page 12

 // Display status returned from enable counter operation

 printf("Enable Counter Complete with status: ");

 if(stat==kma36_status_ok)

 printf("Ok.\n");

 if(stat==kma36_status_i2c_transfer_error)

 printf("Transfer Error.\n");

 }

 // Wait for another key press and then display the main menu again

 printf("\nPress any key to continue...\n");

 read(1, (char*)&key_input, 1);

 kma36_main_menu();

 }else if(key_input == '8'){ // If the '8' key is pressed

 if(address_set_flag==0){ // Address was not set yet--cannot perform this operation

 printf("KMA36 I2C Address has not yet been set. Cannot complete this operation.\n");

 }else{

 // Send request to KMA36 to disable counter

 printf("\n");

 printf("KMA36 Disabling Counter...\n");

 stat = kma36_disable_counter();

 // Display status returned from disable counter operation

 printf("Disable Counter Complete with status: ");

 if(stat==kma36_status_ok)

 printf("Ok.\n");

 if(stat==kma36_status_i2c_transfer_error)

 printf("Transfer Error.\n");

 }

 // Wait for another key press and then display the main menu again

 printf("\nPress any key to continue...\n");

 read(1, (char*)&key_input, 1);

 kma36_main_menu();

 }else if(key_input == '9'){ // If the '9' key is pressed

 if(address_set_flag==0){ // Address was not set yet--cannot perform this operation

 printf("KMA36 I2C Address has not yet been set. Cannot complete this operation.\n");

 }else{

 // Send request to KMA36 to enable fast rate

 printf("\n");

 printf("KMA36 Enabling Fast Rate...\n");

 stat = kma36_enable_fast_rate();

 // Display status returned from enable fast rate operation

 printf("Enable Fast Rate Complete with status: ");

 if(stat==kma36_status_ok)

 printf("Ok.\n");

 if(stat==kma36_status_i2c_transfer_error)

 printf("Transfer Error.\n");

 }

 // Wait for another key press and then display the main menu again

 printf("\nPress any key to continue...\n");

 read(1, (char*)&key_input, 1);

 kma36_main_menu();

 }else if(key_input == '0'){ // If the '0' key is pressed

 if(address_set_flag==0){ // Address was not set yet--cannot perform this operation

 printf("KMA36 I2C Address has not yet been set. Cannot complete this operation.\n");

 }else{

 // Send request to KMA36 to disable fast rate

 printf("\n");

 printf("KMA36 Disabling Fast Rate...\n");

 stat = kma36_disable_fast_rate();

 // Display status returned from disable fast rate operation

MEAS KMA36 DCS FOR MicroZed
 Digital Position Sensor

SENSOR SOLUTIONS /// MEAS KMA36 DCS DEVELOPMENT KIT 07/2016 Page 13

 printf("Disable Fast Rate Complete with status: ");

 if(stat==kma36_status_ok)

 printf("Ok.\n");

 if(stat==kma36_status_i2c_transfer_error)

 printf("Transfer Error.\n");

 }

 // Wait for another key press and then display the main menu again

 printf("\nPress any key to continue...\n");

 read(1, (char*)&key_input, 1);

 kma36_main_menu();

 }else if(key_input == 'a' || key_input == 'A'){ //If the 'a' or 'A' key is pressed

 if(address_set_flag==0){ // Address was not set yet--cannot perform this operation

 printf("KMA36 I2C Address has not yet been set. Cannot complete this operation.\n");

 }else{

 // Display oversampling selection menu

 printf("\n");

 printf("Select an oversampling rate:\n");

 printf(" (0) - Oversampling Rate 2\n");

 printf(" (1) - Oversampling Rate 4\n");

 printf(" (2) - Oversampling Rate 8\n");

 printf(" (3) - Oversampling Rate 32\n");

 // Get keyboard input ignoring keypresses that are not '0' or '1' or '2' or '3'

 read(1, (char*)&key_input, 1);

 while(key_input!='0' && key_input!='1' && key_input!='2' && key_input!='3'){

 read(1, (char*)&key_input, 1);

 }

 if(key_input == '0'){ // If the '0' key is pressed

 // Set oversampling to 2

 kma36_set_accuracy(kma36_oversampling_2);

 printf("Set KMA36 Oversampling Rate to 2\n");

 }else if(key_input == '1'){ // If the '1' key is pressed

 // Set oversampling to 4

 kma36_set_accuracy(kma36_oversampling_4);

 printf("Set KMA36 Oversampling Rate to 4\n");

 }else if(key_input == '2'){ // If the '2' key is pressed

 // Set oversampling to 8

 kma36_set_accuracy(kma36_oversampling_8);

 printf("Set KMA36 Oversampling Rate to 8\n");

 }else if(key_input == '3'){ // If the '3' key is pressed

 // Set oversampling to 32

 kma36_set_accuracy(kma36_oversampling_32);

 printf("Set KMA36 Oversampling Rate to 32\n");

 }

 }

 // Wait for another key press and then display the main menu again

 printf("\nPress any key to continue...\n");

 read(1, (char*)&key_input, 1);

 kma36_main_menu();

 }else if(key_input == 'b' || key_input == 'B'){ // If the 'b' or 'B' key is pressed

 if(address_set_flag==0){ // Address was not set yet--cannot perform this operation

 printf("KMA36 I2C Address has not yet been set. Cannot complete this operation.\n");

 }else{

 res = 0;

 // If resolution is out of bounds, get a new number

 while(res<1 || res>32767){

 res = 0;

 // Display oversampling selection menu

 printf("\nSpecify a resolution between 1 and 32767:\n ");

 // Get keyboard input ignoring keypresses that are not numbers or the enter key

 read(1, (char*)&key_input, 1);

 if(key_input=='0' || key_input=='1' || key_input=='2' || key_input=='3' || key_input=='4' ||

key_input=='5' || key_input=='6' || key_input=='7' || key_input=='8' || key_input=='9'){

 res *= 10;

MEAS KMA36 DCS FOR MicroZed
 Digital Position Sensor

SENSOR SOLUTIONS /// MEAS KMA36 DCS DEVELOPMENT KIT 07/2016 Page 14

 res += (key_input-0x30);

 printf("%c",key_input);

 fflush(stdout);

 }

 while(key_input!=(0x0D)){

 read(1, (char*)&key_input, 1);

 if(key_input=='0' || key_input=='1' || key_input=='2' || key_input=='3' ||

key_input=='4' || key_input=='5' || key_input=='6' || key_input=='7' || key_input=='8' || key_input=='9'){

 res *= 10;

 res += (key_input-0x30);

 printf("%c",key_input);

 fflush(stdout);

 }

 }

 if(res<1 || res>32767){

 printf("\n\nInvalid Resolution Value \"%u\". Press any key to continue...\n",(unsigned

int)res);

 read(1, (char*)&key_input, 1);

 kma36_main_menu();

 }else{

 kma36_set_resolution((u16)res);

 printf("\n\nSet Resolution to %u\n",(unsigned int)res);

 }

 }

 }

 // Wait for another key press and then display the main menu again

 printf("\nPress any key to continue...\n");

 read(1, (char*)&key_input, 1);

 kma36_main_menu();

 }else if(key_input == 27){ // If the 'ESC' key is pressed

 // Print done and exit.

 printf("Done.\n");

 break;

 }else{ // If some other key is pressed

 // Redisplay the main menu

 kma36_main_menu();

 }

 }

 return 0;

}

void kma36_main_menu(void){

 //Clear the screen

 printf("\033[2J");

 //Display the main menu

 printf("***\n");

 printf("**** Measurement Specialties ****\n");

 printf("***\n");

 printf("\n");

 printf(" KMA36 - Universal Magnetic Encoder \n");

 printf("---\n");

 printf("\n");

 printf("Select a task:\n");

 printf(" (1) - Set KMA36 I2C Address\n");

 printf(" (2) - Read KMA36 Angle\n");

 printf(" (3) - Enter Sleep Mode\n");

 printf(" (4) - Exit Sleep Mode\n");

 printf(" (5) - Enable Low Power Mode\n");

MEAS KMA36 DCS FOR MicroZed
 Digital Position Sensor

SENSOR SOLUTIONS /// MEAS KMA36 DCS DEVELOPMENT KIT 07/2016 Page 15

 printf(" (6) - Disable Low Power Mode\n");

 printf(" (7) - Enable Counter\n");

 printf(" (8) - Disable Counter\n");

 printf(" (9) - Enable Fast Rate\n");

 printf(" (0) - Disable Fast Rate\n");

 printf(" (A) - Set Accuracy\n");

 printf(" (B) - Set Resolution\n");

 printf(" (ESC) - Quit\n");

 printf("\n");

 return;

}

PRODUCT SHEET

MEAS France SAS,
a TE Connectivity company.
Impasse Jeanne Benozzi CS 83 163
31027 Toulouse Cedex 3, FRANCE
Tel:+33 (0) 5 820 822 02
Fax: +33 (0) 5 820 821 51
customercare.tlse@te.com

te.com/sensorsolutions

MEAS, TE Connectivity and TE connectivity (logo) are trademarks. All other logos, products and/or company names
referred to herein might be trademarks of their respective owners.

Digilent Pmod™ is a trademark of Digilent Inc.
MicroZed and ZedBoard are trademarks.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes
only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and
disclaims any liability in connection with its use. TE Connectivity‘s obligations shall only be as set forth in TE
Connectivity‘s Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any
incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE
Connectivity products should make their own evaluation to determine the suitability of each such product for the specific
application.

© 2016 TE Connectivity Ltd. family of companies All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

mailto:customercare.tlse@te.com

	MEAS kma36 digital component sensor (DCS) driver for microzed
	Digital Position Sensor

