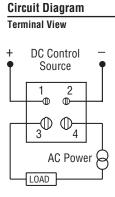
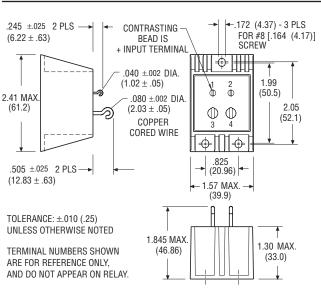
JPS10 Series High Performance Solid State Relays For AC Loads up to 25A @ 250Vrms


Product Facts

- Qualified to MIL-PRF-28750D (Mil Part Numbers M28750/10-001Y and M28750/10-002Y)
- Optically coupled all solid state relay
- TTL compatible input
- Zero voltage turn-on for low EMI
- Custom power package



The JPS10 series solid state relay is designed for AC power switching up to 25 amps at 250Vrms. The circuit employs back-toback photo SCRs with zero voltage turn-on for reliable switching of resistive or reactive loads. TTL compatible input circuitry is optically isolated to 1,500Vrms from the AC load circuit. The relay is offered in two versions: the JPS10-1Y with a maximum zero voltage turn-on window of 15 volts (preferred version for resistive loads), and the JPS10-2Y with a maximum window of 40 volts (preferred version for reactive loads).

Military Part Number	Zero Crossing Window
M28750/10-001Y	15 V pk max.
M28750/10-002Y	40 V pk max.
	M28750/10-001Y

Outline Drawing

JPS10 Series High Performance Solid State Relays For AC Loads up to 25A @ 250Vrms (Continued)

Electrical Specifications (-55°C to +105°C unless otherwise specified)

Environmental Characteristics

Ambient Temperature Range — Operating — -55°C to +110°C Storage — -55°C to +125°C Vibration Resistance — 30 G's, 10-3,000 Hz Shock Resistance — 1,500 G's, 0.5 ms pulse Constant Acceleration Resistance (Y1 axis) —

5,000 G's

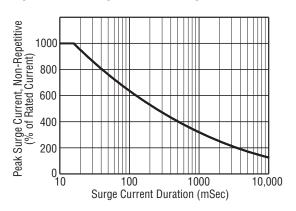
Mechanical Characteristics

Weight (max.) — 6 oz. (170 grams) Materials — Case — Aluminum, hot tin dipped Terminals — Copper cored wire, gold plated

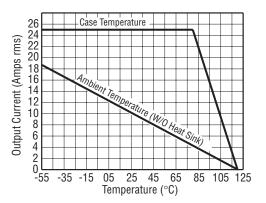
Input		
Input supply voltage range (Vcc)	4 - 32 Vdc	
Input current (max.)	16mAdc	
Must turn-on voltage	4Vdc	
Must turn-off voltage	1Vdc	
Reverse voltage protection	-32Vdc	
I/O		
Dielectric strength (min.)	1,500Vrms/60 Hz.	
Insulation resistance (min.) @ 500Vdc	10º ohms	
Capacitance (max.)	20pF	
Output		
Output current rating (max.)	25Arms (Fig. 2, Note 1)	
Surge current (max.)	80A pk (Fig. 1, Note 2)	
Continuous load voltage (max.)	250Vrms	
Transient blocking voltage (max.)	500V pk	
Frequency range	45 - 440 Hz.	
Output voltage drop (max.) @ 25A load current	1.5Vrms	
Off-state leakage current (max.) @ 220Vrms/400 Hz.	10mArms	
Turn-on time (max.)	1/2 cycle	
Turn-off time (max.)	1 cycle	
Off-state dv/dt (min.), with snubber	200V /µs (Note 3)	
Zero voltage turn-on window (max.), JPS10-1Y	15V pk	
Zero voltage turn-on window (max.), JPS10-2Y	40V pk	
Waveform distortion (max.)	4Vrms	
Output chip junction temperature (max.)	125°C (Note 4)	

Notes

1. Operation at elevated load currents up to 25 amps is dependent on the use of suitable heatsink to maintain case temperature per Fig. 2.


Thermal resistance (max.), junction to ambient Thermal resistance (max.), junction to case

2. Heating of output chips during and after a surge may cause loss of output blocking capability until junction temperature falls below maximum rating.


3. Internal snubber network is provided across output chips.

4. Case temperature measurement point is center of mounting surface.

Figure 1 - Peak Surge Current vs. Surge Current Duration

Figure 2 - Load Current vs. Temperature

6.8°C/W

1.2°C/W