

HT-SCE and HT-CT HEAT SHRINK IDENTIFICATION MARKER SLEEVES

SCOPE

This specification establishes the quality standard for heat-shrinkable identification marker sleeves for use in applications where high temperature performance or where extreme resistance to cleaning solvents is required. They are also used in space applications where low outgassing is critical. These special requirements are detailed in Table 5.

The operating temperature for this product is -55°C to +225°C (-67 to +437°F).

This system is a computerised method of identifying items by printing a mark on HT-SCE and HT-CT product ranges which is permanent upon printing. This system is not recommended where strain relief properties are required.

The marker sleeves shall be fabricated from cross linked polymer tubing. Supplied flattened and spooled in a continuous tube as HT-CT or mounted on a carrier as HT-SCE. All sizes have a 2:1 shrink ratio except size 3/32 which has a 3:1 shrink ratio (refer to Table 1 for more details).

The marker system comprises specific printers and ribbons; refer to TE Connectivity (TE) document 411-121005 'TE Identification Printer Product Ribbon Matrix'. Compliance to this specification can only be guaranteed if TE Connectivity approved printers and ribbons are used. All ribbons used must have an expiry date which exceeds the testing period. Products printed with white or silver ribbons may not fully comply with this specification when exposed to some aggressive fluids as detailed in Table 4.

Unless specified, the tube size for qualification testing is 6.4mm.

THIS IS A CLASS 1 DOCUMENT WHICH IS NONCONFIDENTIAL.

The information contained within this document is the property of TE Connectivity. It is supplied in confidence and the commercial security of the contents must be maintained. It must not be used for any purpose other than that for which it is supplied nor, may any information contained in it be disclosed to unauthorised persons. It must not be reproduced in whole or in part without obtaining written permission from TE Connectivity (TE).

While TE has made every reasonable effort to ensure the accuracy of the information in this standard, TE does not guarantee that it is error-free, nor does TE make any other representation, warranty or guarantee that the information is accurate, correct, reliable or current. TE reserves the right to make any adjustments to the information contained herein at any time without notice. TE expressly disclaims all implied warranties regarding the information contained herein, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose. The dimensions and design specifications.

*Trademark. TE Connectivity, TE connectivity (logo), and TE (logo) are trademarks. Other logos, product and/or company names may be trademarks of their respective owners.

1 of 17

Table of Contents

SCC)PE	. 1
1.	COMPOSITION, APPEARANCE AND COLOR	. 3
2.	DIMENSIONS	. 3
3.	TEST METHODS	. 6
4.	RELATED DOCUMENTS	
5.	FREQUENCY	
6.	STORAGE CONDITIONS	
7.	PACKAGING	
8.	SHELF LIFE	13
9.	TABLE 4 – GENERAL REQUIREMENTS FOR IDENTIFICATION PRODUCTS	13
10.	TABLE 5: SPECIFIC REQUIREMENTS FOR HT-SCE AND HT-CT HEAT SHRINK SLEEVING	
11.	REVISION HISTORY	17
12.	TABLE 6: TEST FLUIDS DESCRIPTION	17

1. COMPOSITION, APPEARANCE AND COLOR

The marker sleeves shall be fabricated from irradiated, thermally stabilised polyvinylidene compound. It shall be homogeneous and essentially free from flaws, defects, pinholes, bubbles, seams, cracks, or inclusions. The marker sleeves shall be white or yellow, other colours available on request.

2. DIMENSIONS

The product shall be supplied in one of the following formats:

- I. HT-SCE As shown in figure 1 to the dimensions of Table 1.
- II. HT-CT As shown in figure 2 to the dimensions of Table 1.

Figure 1: Marker Sleeve Format – Dimensions in mm (inch).

© 2023 TE Connectivity Ltd. family of companies. All Rights Reserved. | Indicates Change IDENTIFICATION SOLUTIONS /// RW-2512 Rev [8]

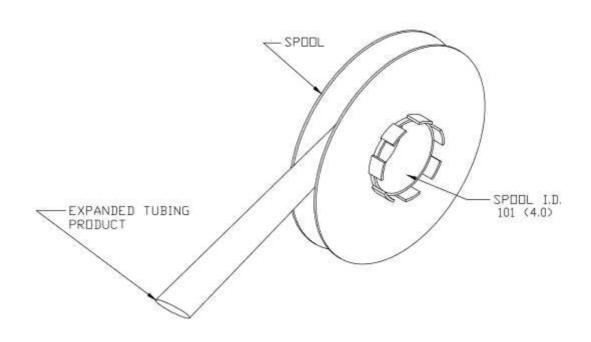


Figure 2: HT-CT format – Dimensions in mm (inch).

Heat Shrink Product (Fig. 3) in 'as Supplied' (Expanded) "D", and in the Recovered State "d".

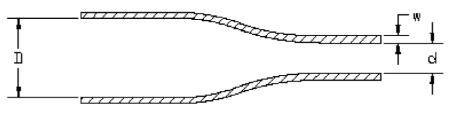


Figure 3: Product Dimensional Change During Recovery

5375 (08/13) 108-121015

- Public

Table 1: Product Dimensions

	HT-SCE and HT-CT							
Part Description	"D" Minimum Supplied Inside Diameter mm (inches)	"d" Maximum Recovered Inside Diameter mm (inches)	"w" Wall Thickness after Recovery mm (inches)	Minimum Sleeve Flattened Width mm (inches)	Sleeve Progression ¹ mm (inches)	Nominal Weight of single sleeve (~50mm long) grams		
HT-SCE-3/32	2.36 (.093)	0.79 (.031)	0.38 ± 0.08 (.015 ± .003)	4.32 (.170)	12.7 ± 0.64 (.500 ± .025)	0.14		
HT-SCE-1/8	3.18 (.125)	1.58 (.063)	0.38 ± 0.08 (.015 ± .003)	5.84 (.230)	12.7 ± 0.64 (.500 ± .025)	0.21		
HT-SCE-3/16	4.75 (.187)	2.38 (.094)	0.38 ± 0.08 (.015± .003)	8.00 (.315)	12.7 ± 0.76 (.500 ± .030)	0.29		
HT-SCE-1/4	6.35 (.250)	3.18 (.125)	0.38 ± 0.08 (.015 ± .003)	10.7 (.421)	16.9 ± 0.89 (.665 ± .035)	0.38		
HT-SCE-3/8	9.53 (.375)	4.76 (.188)	0.38 ± 0.08 (.015 ± .003)	15.5 (.610)	25.4 ± 0.89 (1.00 ± .035)	0.53		
HT-SCE-1/2	12.7 (.500)	6.35 (.250)	0.38 ± 0.08 (.015 ± .003)	20.3 (.800)	29.6 ± 1.00 (1.17 ± .040)	0.73		
HT-SCE-3/4	19.0 (.750)	9.53 (.375)	0.38 ± 0.08 (.015 ± .003)	30.5 (1.20)	42.3 ± 1.00 (1.67 ± .040)	1.30		
HT-SCE-1	25.4 (1.00)	12.7 (.500)	0.43 ± 0.10 (.017 ± .004)	40.4 (1.59)	50.8 ± 1.00 (2.00 ± .040)	1.61		
HT-SCE-1-1/2	38.1 (1.50)	19.0 (.750)	0.43 ± 0.10 (.017 ± .004)	60.2 (2.37)	72.0 ± 1.00 (2.83 ± .040)	2.51		

¹ Sleeve progression column is applicable only for ladder format (HT-SCE) not continuous.

3. TEST METHODS

All tests should be carried out in 'fully recovered' form except where specified.

3.1. PREPARATION OF TEST SAMPLE

Tests shall be carried out on a sample taken at random from a batch of sleeves. A batch is defined as that quantity of product extruded at any one time.

When required by the test procedure, marker sleeves shall be printed using printers and ribbons specified by TE Connectivity. The full list can be found in TE document 411-121005 'TE Identification Printer Product Ribbon Matrix'.

Print random characters onto the marker sleeves to fill the printable area, using font type Arial 10 bold, capital letters to be used. HT-SCE product shall be removed from the carrier and HT-CT products shall be cut/perforated and separated using TE approved printer systems before testing.

The printing shall be examined for legibility in accordance with TE document 411-121002 Print Contrast Reference Scale. The initial print contrast must be C8 or above.

Marker sleeves or tubing should be recovered in a forced air oven for 3 minutes at 200±5°C (392±10°F). Samples shall be removed from the oven and allowed to cool to 23±2°C (73±4°F) for at least 4 hours before continuing. Where required by the test method, testing shall be completed on continuous tubing. No pre-conditioning period is required prior to testing except where specified.

All tests shall be made at a temperature of 23±2°C (73±4°F) unless otherwise specified.

3.2. WORKMANSHIP

Visually examine three 'as received' marker sleeves for workmanship using normal vision and without magnification. Check for flaws, defects, pinholes, bubbles, seams, cracks or inclusions. The visual examination should be made with the sample placed inside a laboratory light box with D65 illumination.

Using the method described in TE document 109-121035, measure the colour of 'as received' marker sleeves before any printing. Record values for L*a*b* using the 8mm (0.32") aperture and D65 illuminance. Colour results are recorded for information only.

3.3. PRINT PERFORMANCE

3.3.1. MARK ADHERENCE

The test method shall be as specified in TE document 109-121012.

Three marker sleeves shall be prepared as detailed in Section 4.1. Samples shall be tested using a modified Crockmeter fitted with an eraser and a total load of 1kg, using the number of rubs specified in Table 4.

The printing shall be examined for legibility using normal reading vision. Print contrast shall be evaluated in accordance with TE document 411-121002.

3.3.2. SOLVENT RESISTANCE

The test method shall be as specified in TE document 109-121014.

Twelve marker sleeves shall be prepared as detailed in Section 4.1 and then tested for solvent resistance. A set of three sleeves is tested per solvent. The printing shall be examined for legibility using normal reading vision. Print contrast shall be evaluated in accordance with TE document 411-121002.

3.3.3. FLUID RESISTANCE and PRINT PERMANCENCE

The test method shall be as specified in TE document 109-121039.

Three marker sleeves per fluid shall be prepared as detailed in Section 4.1. Marker sleeves shall be completely immersed in each fluid for the times and at the temperatures specified in Table 4. The volume of the fluid shall not be less than 20 times that of the sample. After immersion, the marker sleeves are lightly blotted with tissue paper to remove excess surface fluid and air dried at 23±2°C (73±4°F) for 45±15min. Samples shall be tested with a modified Crockmeter fitted with 'Super Twill' cloth and a total load of 1kg.

Additional testing in IPA is required using three fully recovered marker sleeves prepared as detailed in Section 4.1. Soak the 'Super Twill' cloth with IPA and test for mark permanence as detailed in TE document 109-121012.

The printing shall be examined for legibility using normal reading vision. Print contrast shall be evaluated in accordance with TE document 411-121002.

3.4. PHYSICAL TESTING

3.4.1. DIMENSIONS and LONGITUDINAL CHANGE

The test method shall be as specified in TE document 109-121003.

Three 50mm (1.97") long unrecovered marker sleeves shall be tested for inside diameter. The marker sleeves shall be measured before recovery, then recovered as detailed in Section 4.1 and the measurements taken again. The wall thickness of the marker sleeves shall also be measured following recovery and the minimum and maximum recovered wall thickness shall be reported.

Three 150mm (5.91") long unrecovered marker sleeves taken from a continuous reel shall be tested for Longitudinal Change. Make two gauge marks, 100mm (3.94") apart on each marker sleeve. The marker sleeves shall then be recovered as detailed in Section 4.1. and the distance between gauge marks measured and the change expressed as a percentage of the original gauge length.

3.4.2. TENSILE STRENGTH and ELONGATION AT BREAK

The test method shall be as specified in TE document 109-121002.

Five 125mm (4.92") marker sleeves shall be prepared as detailed in Section 4.1. Use a 50.8 (2") initial jaw separation, with 25.4mm (1") gauge marks and a jaw separation speed of 100mm/min (4"/min).

3.4.3. SPECIFIC GRAVITY

The test method shall be as specified in TE document 109-121015.

Three unprinted marker sleeves 25mm (0.98") in length shall be prepared as per TE document 109-121015. Test samples should be prepared in a way to prevent trapping of air.

3.4.4. SPLIT TESTING

The test method shall be as specified in TE document 109-121031.

Ten unprinted, perforated or scored marker sleeves shall be tested. Samples should be recovered onto a mandrel which has been pre-heated for the time and at the temperature stated in the test method. Samples should be examined for splitting after cooling to $23\pm2^{\circ}C$ ($73\pm4^{\circ}F$).

3.5. THERMAL TESTING

3.5.1. HEAT SHOCK

The test method shall be as specified in TE document 109-121007.

Six unrecovered marker sleeves shall be prepared as detailed in Section 4.1. Samples shall be conditioned for 4 hours at $275\pm2^{\circ}C$ ($527\pm4^{\circ}F$) in an air circulating oven, then removed and allowed to cool for a minimum of 2 hours at $23\pm2^{\circ}C$ ($73\pm4^{\circ}F$).

After conditioning three samples shall be tested for Mark Adherence in accordance with section 4.3.1. The printing shall be examined for legibility using normal reading vision. Print contrast shall be evaluated in accordance with TE document 411-121002.

The three remaining samples shall be tested for resistance to bending. Mandrel diameter for HT-SCE 6.4 size tubing is 7.9mm (0.311").

3.5.2. HEAT AGING

The test method shall be as specified in TE document 109-121008.

Six unrecovered marker sleeves shall be prepared as detailed in Section 4.1. Samples shall be conditioned for 168 hours at $225\pm2^{\circ}C$ ($437\pm4^{\circ}F$) in an air circulating oven, then removed and allowed to cool for a minimum of 4 hours at $23\pm2^{\circ}C$ ($73\pm4^{\circ}F$).

After conditioning three samples shall be tested for Mark Adherence, in accordance with section 4.3.1. The printing shall be examined for legibility using normal reading vision. Print contrast shall be evaluated in accordance with TE document 411-121002.

The remaining three samples shall be tested for resistance to bending. Mandrel diameter for HT-SCE 6.4 size tubing is 7.9mm (0.311").

3.5.3. LOW TEMPERATURE FLEXIBILITY

The test method shall be as specified in TE document 109-121006.

Six marker sleeves shall be prepared as detailed in Section 4.1. Samples shall be conditioned for 4 hours at -55±2°C (-67±4°F) in a cold chamber. After conditioning, and whilst still at -55±2°C (-67±4°F), three samples shall be immediately tested for resistance to bending. Mandrel diameter for HT-SCE 6.4 size tubing is 7.9mm (0.311").

The remaining three samples shall be removed from the cold chamber and allowed to return to $23\pm2^{\circ}C$ (73±4°F) for a minimum of 2 hours. The samples shall then be tested for Mark Adherence in accordance with section 4.3.1.

The printing shall be examined for legibility using normal reading vision. Print contrast shall be evaluated in accordance with TE document 411-121002.

3.5.4. THERMAL CYCLING

The test method shall be as specified in TE document 109-121057.

Six marker sleeves shall be prepared as detailed in Section 4.1. Samples shall be conditioned for six cycles. Each cycle shall consist of thirty minutes at -196±5°C (-321±10°F) in liquid nitrogen, followed by thirty minutes at 200°C±5°C (392±10°F) in an air circulating oven. After the final cycle the marker sleeves shall be allowed to cool for a minimum of 2 hours at 23±2°C (73±4°F).

Three samples shall be tested for Mark Adherence in accordance with section 4.3.1. The printing shall be examined for legibility using normal reading vision. Print contrast shall be evaluated in accordance with TE document 411-121002.

The remaining three samples shall be tested for resistance to bending. Mandrel diameter for HT-SCE 6.4 size tubing is 7.9mm (0.311").

3.6. ENVIRONMENTAL TESTING

3.6.1. Copper Mirror Corrosion

The test method shall be as specified in TE document 109-121009. Three unrecovered marker sleeves shall be tested. After the test, mirrors should be assessed for corrosion.

3.6.2. Water Absorption

The test method shall be as specified in TE document 109-121016. Three marker sleeves shall be prepared as detailed in Section 4.1. The mean average should be reported.

3.6.3. UV Resistance

The test method shall be as specified in ASTM G154. Test for 1000 hours at 1.35 W/m²/nm irradiance. Twelve marker sleeves shall be prepared as detailed in Section 4.1. Condition 6 marker sleeves as described in section (i) and six marker sleeves as described in section (ii) below:

- i. UVA type fluorescent bulbs, consisting of a repeating cycle of 8 hours exposure at 60±2°C (140±4°F) followed by 4 hours of condensation at 50±2°C (122±4°F).
- ii. UVB type fluorescent bulbs, consisting of a repeating cycle of 8 hours exposure at 60±2°C (140±4°F) followed by 4 hours of condensation at 50±2°C (122±4°F).

After conditioning, three of each conditioned marker sleeves shall be tested for resistance to bending. Mandrel diameter for HT-SCE 6.4 size tubing is 19.1mm (3/4"). Samples shall be visually examined for cracking or splitting.

The remainder of the samples shall be tested for Mark Adherence in accordance with section 4.3.1.

The printing shall be examined for legibility using normal reading vision. Print contrast shall be evaluated in accordance with TE document 411-121002.

3.6.4. Vacuum Outgassing

The test method shall be as specified in ASTM E 595. Three marker sleeves shall be prepared as detailed in Section 4.1.

The conditions for testing are:

- i. Exposure time = 24 hours.
- ii. Sample temperature = $130\pm 2^{\circ}C$ (266 $\pm 4^{\circ}F$).
- iii. Condensing surface temperature = $18\pm3^{\circ}C$ ($64\pm5^{\circ}F$).
- iv. Pressure not greater than 1 x 10-5 Torr.

The vacuum shall be provided by a diffusion pump and a liquid nitrogen trap. The apparatus shall consist of a glass sample chamber, refluxing liquid heat source and a polished stainless-steel plate in close contact with a copper cold finger cooled internally by circulating water. The axis of the exit of the sample chamber shall be perpendicular to and approximately 7mm (.276") from the cooled condensing plate. Use a micro balance to weigh the samples before and after conditioning and calculate total weight loss. Weigh the condensing plate before and after to calculate percent volatile condensable material.

Report the percentage of Total Mass Loss (TML) and percent of Collected Volatile Condensable Materials (CVCM).

3.7. ELECTRICAL TESTING

3.7.1. Dielectric Strength

The test method shall be as specified in TE document 109-121005.

Five marker sleeves 150mm (5.91") long shall be printed as detailed in Section 4.1. The marker sleeves shall then be recovered onto preheated mandrels in a forced air oven for 3 minutes at 200±5°C (392±10°F). The average dielectric strength of five samples to be recorded.

3.7.2. Volume Resistivity

The test method shall be as specified in TE document 109-121017. Three marker sleeves approx. 200mm (7.87") long shall be printed as detailed in Section 4.1. The average volume resistivity value should be recorded.

3.8. FIRE SAFETY

3.8.1. FIRE PROPAGATION - ASTM D2671 Procedure B

The test method shall be as specified in TE document 109-121053.

Five marker sleeves 460mm (18.1") long shall be prepared as detailed in Section 4.1. The duration of burning and percentage of the burnt area shall be recorded.

3.8.2. EN45545-2 FLAMMABILITY HAZARD LEVEL - Oxygen Index, BS EN ISO 4589-2

The test method shall be as specified in TE document 109-121054.

Tests shall be carried out on 3mm (0.12") thick plaques of the material from which the marker sleeves are fabricated. Each plaque should be irradiation cross-linked to the same level as the marker sleeves. Test piece dimensions shall be 6.5 ± 0.5 mm x 80 ± 1 mm x 3 ± 0.5 mm (0.26 ± 0.02 " x 3.15 ± 0.04 " x 0.12 ± 0.02 ") cut from the irradiated plaques. Samples shall be conditioned for at least 24hrs at $23\pm2^{\circ}$ C ($73\pm4^{\circ}$ F) prior to testing.

3.8.3. SURFACE FLAMMABILITY - Flame Spread Index, Is, ASTM E162

The test method shall be as specified in ASTM E162 with the following modification: Instead of testing a moulded plaque, a 25.4mm (1.00") piece of continuous tubing printed with two lines of text shall be used.

To form the specified exposed area, cut six of 13mm (0.51") wide cement board fingers. Cut six of 75mm (2.95") lengths of 1inch sized continuous tube and recover one over each of the cement board fingers. The cement board fingers are butted together to form a single sheet. Five single sheets are placed side by side vertically for each test to create the required test samples. Samples are conditioned for at least 24 hours at $23\pm2^{\circ}$ C (73 $\pm4^{\circ}$ F) before testing.

3.8.4. SMOKE OPTICAL DENSITY - Ds, ASTM E662

The test method shall be as specified in ASTM E662 with the following modification: Instead of testing a moulded plaque a 25.4mm (1.00") piece of continuous tubing, printed with two lines of text shall be used.

To form the specified exposed area, cut six of 13mm (0.51") wide cement board fingers. Cut six of 75mm (2.95") lengths of 1inch sized continuous tube and recovered one over each of the cement board fingers. The cement board fingers are butted together to form a single sheet. Five single sheets are placed side by side vertically for each test to create the required test samples. Samples are conditioned for at least 24 hours at $23\pm2^{\circ}$ C ($73\pm4^{\circ}$ F) before testing.

Testing is carried out using an NBS smoke chamber with a 25kW/m2 radiant heat. Tests are carried out with and without a pilot flame.

3.8.5. TOXIC GAS GENERATION - Bombardier SMP 800-C

The test method shall be as specified in Bombardier SMP 800-C and is carried out during the ASTM E662 test.

3.8.6. HEAT RELEASE - ASTM E1354

The test method shall be as specified in ASTM E1354 with the following modification: Instead of testing a moulded plaque, a 25.4mm (1.00") piece of continuous tubing, printed with two lines of text shall be used.

To form the specified exposed area, cut six of 13mm (0.51") wide cement board fingers. Cut six of 75mm (2.95") lengths of continuous tube and recovered one over each of the cement board fingers. The cement board fingers are butted together to form a single sheet. Five single sheets are placed side by side vertically for each test to create the required test samples. Samples are conditioned for at least 24 hours at 23±2°C (73±4°F) before testing.

Samples are tested using a 50kW/m² heat flux. Average Heat Release Rate, Maximum (peak) heat release rate and Average Specific Extinction Area at 3 minutes is measured.

4. RELATED DOCUMENTS

ASTM D2671-13	Standard Test Methods for Heat-Shrinkable Tubing for Electrical Use					
ASTM G-154-16	Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Non-metallic Material					
AMS-DTL-23053E	Insulating Sleeving, Electrical, Heat Shrinkable, General Specification for Marking of Electrical Insulation Materials.					
BS 4G 198-3: 1999	Sleeves and moulded components for aircraft electric cables and equipment wires. Specification for heat shrinkable sleeving for binding, insulation, and identification					
BS 6853:1999	Code of Practice for Fire Precautions in The Design and Construction of Passenger Carrying Trains					
IEC 60684-2: 1997	Flexible insulating sleeving - Part 2: Methods of test					
BS EN ISO 4589-2: 1996	Plastics – Determination of burning behaviour by oxygen index - Part 2: Ambient temperature test					
NF X 70 – 100: 1986	Fire Tests Analysis of Pyrolysis and Combustion Gases Tube Furnace Method					
NF F 16-101: 1988	Railway Rolling stock fire behaviour choice of materials. Rolling Stock Classification A1					
DIN 5510-2: 2009-05	Preventive fire protection in railway Vehicles-Part 2 Fire behaviour and fire side effects of materials and parts; classification, requirements, and test methods. Dripping Classification ST2					
BS EN 45545-2: 2013+A1:2015	Railway applications- Fire protection on railway vehicles					
SAE AS5942: 2014	Marking of Electrical Insulating Materials					
ASTM G21-15	Standard practice for resistance of synthetic polymeric materials to fungi					
UL 224	Extruded Insulated Tubing					

TABLE 2 – DETAILS OF RELATED STANDARDS AND ISSUE

5375 (08/13) 108-121015

- Public

TABLE 3 - TE CONNECTIVITY DOCUMENTS

TE Document	Title	Complies with
411-121002	TE Connectivity Print contrast reference scale	
411-121005	TE Identification Printer Product Ribbon Matrix	
109-121002	Tensile Strength and Ultimate Elongation test	ASTM D2671
109-121003	Dimensions	
109-121005	Dielectric strength	ASTM D2671 (ASTM D149)
109-121006	Low Temperature Flexibility	IEC 60684-2
109-121007	Heat Shock	SAE-AS-23053 ASTM D2671
109-121008	Heat Ageing	SAE-AS-23053 ASTM D2671
109-121009	Copper Mirror Corrosion	AMS DTL 23053
109-121012	Mark Adherence	SAE AS5942
109-121014	MIL STD 202 Resistance to Solvents	MIL 202 Method 215
109-121015	Specific Gravity	ASTM D792
109-121016	Water Absorption	ASTM D570
109-121017	Volume Resistivity	ASTM D2671 ASTM D257
109-121031	Split Testing	
109-121039	Fluid Immersion Testing at Room Temperature	
109-121053	Flammability testing in accordance with ASTM D2671 Procedure B & C	ASTM D2671, procedure B
109-121054	Limiting Oxygen Index (LOI) test	BS EN ISO 4589-2:1999
109-121057	Thermal Cycling using liquid Nitrogen	

The current document issue should be used, and reference made in the qualification report.

5. FREQUENCY

Testing frequency shall be 'Production Routine' or 'Qualification'.

Production routine tests consisting of visual examination, dimensions, and longitudinal change, print quality and adherence of marking shall be carried out on every batch of marker sleeves.

Qualification tests shall be carried out to the requirements of the Design Authority.

6. STORAGE CONDITIONS

HT-SCE and HT-CT should be stored in its original packaging with any plastic covers which were included during shipping. Store out of direct sunlight in a clean, dry, dust free environment. Product should not be stored outside of the designed storage temperature range of -10°C (14°F) to 35°C (104°F), and 50±30% Relative Humidity.

7. PACKAGING

Packaging shall be in accordance with good commercial practice. Each package shall bear an identification label showing material quantity, description, size, color, and batch number. Additional information shall be supplied as specified in the contract or order.

8. SHELF LIFE

The shelf life of HT-SCE AND HT-CT is 144 months from date of manufacture when stored as prescribed above.

9. TABLE 4 – GENERAL REQUIREMENTS FOR IDENTIFICATION PRODUCTS

PROPERTY	TEST METHOD	UNITS	REQUIREMENTS	RW-2512 Section			
PRINT PERFORMANCE							
Print Quality			Legible, minimum print contrast C8	4.1			
Mark Adherence	TE document 109-121012,100 rubs, 1kg load, eraser		Legible, minimum print contrast C3	4.3.1			
Solvent Resistance Solution A Solution B Solution C Solution D	TE document 109-121014 100 strokes, toothbrush		Legible, minimum print contrast C3	4.3.2			
Fluid Resistance, Mark Permanence	TE document 109-121039		Legible, minimum print contrast C3 ²	4.3.3			
Reference test oil IRM 902 MIL-PRF-23699 lubricating oil Skydrol LD-4 phosphate ester hydraulic fluid MIL-H-83282 hydraulic fluid JP8 jet fuel Diesel fuel Propylene glycol de-icing fluid 50/50 Tap water 5% Sodium chloride solution 1% Teepol detergent	24 hours immersion at 23±2°C (73.4±4°F), followed by 20 wipes at 1kg load						
Isopropyl alcohol wipe (IPA)	TE108-121012 20 cycles, soaked "SuperTwill" cloth		Legible, minimum print contrast C3 ³	4.3.3			

² For optimum performance, black ribbon should be used where possible (see 411-121005). White and silver ribbons do not fully meet these requirements in harsher fluids. For example, Skydrol LD-4, Diesel, and JP-8.

³ For optimum performance, black ribbon should be used where possible (see 411-121005). White and silver ribbons do not fully meet these requirements in harsher fluids. For example, Skydrol LD-4, Diesel, and JP-8.

PROPERTY	TEST METHOD	UNITS	REQUIREMENTS	RW-2512 Section
Workmanship	Laboratory light box with D65 lighting, using normal or corrected vision at 14 inches (355.6mm).		In accordance with section 8.2	4.2
Dimensions	TE document 109-121003	mm	Table 1	4.4.1
Longitudinal Change	TE document 109-121003	%	20 Maximum	4.4.1
Tensile Strength	TE document 109-121002	MPa	24.1 minimum	4.4.2
Ultimate Elongation	TE document 109-121002	%	200 Minimum	4.4.2
Specific Gravity	TE document 109-121015		1.80 Maximum	4.4.3
Split Test	TE document 109-121031	%	100 Minimum	4.4.4
THERMAL TESTING	1		1	1
Heat Shock 4 hours at 275±3°C (527±6°F) Mandrel Bend Mark Adherence	TE document 109-121007 TE document 109-121012 50 rubs, 1kg load, eraser		No damage to the marker and print Legible, Minimum print contrast C3	4.5.1
Heat Ageing 168hrs at 225±2°C (437±4°F) Mandrel Bend Mark Adherence	TE document 109-121008 TE document 109-121012 50 rubs, 1kg load, eraser		No damage to the marker and print Legible, Minimum print contrast C3	
ENVIRONMENTAL TESTING				I
Copper Mirror Corrosion 16 Hours at 200°C (392°F)	TE document 109-121009	%	Damaged area of copper mirror, 4. 8 Maximum	
Water Absorption	TE document 109-121016	%	1 Maximum 4.6.2	
Fungus Resistance	ASTM G21 Rating of 1 or less Followed by Mark Adherence 20 Rubs, 1kg load, Eraser			

PROPERTY	TEST METHOD	UNITS	REQUIREMENTS	RW-2512 Section
UV Resistance followed by,	ASTM G154 UVA and UVB (8 hours dry/4 hours wet cycle)		1000 hours at each wavelength	4.6.3
Mandrel Bend	360° bend around a mandrel (10 x thickness)		No damage to the marker and print	
Mark Adherence	TE document 109-121012 20 rubs, 1kg load, eraser		Legible, minimum print contrast C3	
ELECTRICAL TESTING				
Dielectric Strength	TE document 109-121005	kV/mm	23.6 Minimum	4.7.1
Volume Resistivity	TE document 109-121017	Ohm/ Cm	1 x 10 ¹² Minimum	4.7.2
FIRE SAFETY				
Fire Propagation ASTM D2671 Procedure B	TE document 109-121053 ASTM D267 procedure B		Burn time shall not exceed 30 seconds, and not more than 25% of indicator flag shall be burned or charred. No dripping or flowing. No burning of cotton.	4.8.1
Flammability Hazard rating EN45545-2 BS EN ISO 4589-2 Oxygen Index (OI), UL224	BS EN ISO 4589-2 TE document 109-121054	%	Requirement set R24 Hazard Level Classification 3 32% Minimum Pass VW-1 Rating	4.8.2 UL224
Specific Optical Smoke Density, Ds	ASTM E 662 25kW/m2 radiant heat source.			4.8.4
Flaming Mode 1.5 minutes 4 minutes	Flaming mode		100 Maximum 200 Maximum	
Non-Flaming Mode 1.5 minutes 4 minutes	Non-flaming mode.		100 Maximum 200 Maximum	

PROPERTY	TEST METHOD	UNITS	REQUIREMENTS	RW-2512 Section
Heat Release ⁴				4.8.6
Average Heat Release Rate (180 s)	ASTM E1354	kW/m²	≤ 120	
	50kWm2 applied heat	kW/m ²	Over course of test	
Maximum (Peak) Heat	flux with retainer		≤ 140	
Release Rate	frame			
		m²/kg	≤ 500	
Average specific extinction		_		
area (180 s)				
Toxic Gas Generation				4.8.5
Bombardier BMS 800-C	Gas extracted during ASTM E662 test.		Maxima:	
Carbon Monoxide (CO)	25kW/m2 radiant heat		3500	
Carbon Dioxide (CO2)	source.		90000	
Nitrogen Oxides (NO2)			100	
Sulphur Dioxide (SO2)	Flaming mode and		100	
Hydrogen Chloride (HCl)	non-flaming mode	ppm	500	
Hydrogen Fluoride (HF)	assessed, worst case		100	
Hydrogen Bromide (HBr)	reported.		100	
Hydrogen Cyanide (HCN)			100	

10. TABLE 5: SPECIFIC REQUIREMENTS FOR HT-SCE AND HT-CT HEAT SHRINK SLEEVING

PROPERTY	TEST METHOD	UNITS	REQUIREMENTS	RW-2512 SECTION
THERMAL				
Thermal Cycling: 6 cycles of: 0.5hr at -196±5°C (-321±9°F) 0.5hr at 200±5°C (392±5°F)	TE document 109-121046	%	50 Minimum, legible	4.5.4
Followed by Print performance	TE document 109-121012			
Low Temperature flexibility 4 hours at -55°C, followed by: Mandrel Bend	TE 109-121006 360° bend around a mandrel (10 x thickness)		No damage to the marker and print	4.5.3
Mark Adherence	TE 109-121012 20 rubs, 1kg load, eraser		Legible, minimum print contrast 3	

⁴ There is currently no requirement for Heat Release testing. TE have incorporated proposed changes to existing FRA 49 CFR Ch. II, Part 238, App. B as recommended by the National Association of State Fire Marshals.

ENVIRONMENTAL					
Vacuum Outgassing	ASTM E 595				
TML (Total Mass Loss) VCM	Exposure time, 24hr sample temp. 130±2°C (266±4°F);	%	1.0 Maximum	4.6.4	
(Volatile Condensable Material)	Condensing surface temp. 18±3°C (64±5°F); and pressure, not greater than 1x10 ⁻⁵ Torr		0.1 Maximum		

11. REVISION HISTORY

Revision	Description of change	Date	Incorporated by
1	RT-1806 (original)		System
2			
3	Convert to RW spec'	July 2004	Alan Kean
4	Addition of printer ribbon matrix, removal of obsolete specs.	Jan 2013	Lee Smith
5	Standardise test fluids, addition of UV resistance test. Addition of HT-CT. Logo change.	July 2017	Alan Kean
6	Formatting change and correction to polyolefin reference.	March 2019	Mike Nuttall
7	Clarification	May 2019	Mike Nuttall
8	Addition of solvent D for MIL 202 method 215 test, correction to Fahrenheit conversions.	Dec' 2023	Alan Kean

12. TABLE 6: TEST FLUIDS DESCRIPTION

Fluid	Description
IRM902	Reference Oil (replacement for ASTM oil NO. 2)
MIL-PRF-23699	Synthetic lubricating oil STD class (NATO Code 0-156). Has replaced MIL- L7808 oil at temperatures above 25°C (77°F).
Skydrol LD-4	Widely used aviation phosphate ester based hydraulic fluid.
MIL-H-83282	The principal hydraulic fluid used in military aircraft. It replaces MIL-H-5606.
JP-8	Kerosene based jet fuel, replacement for JP-4. NATO code is F-34. It's specified by MIL-DTL-83133 and British Defence Standard 91-87.
Diesel Fuel (BS EN 590:2009+A1)	General fuel used in transportation
Propylene Glycol de-icing fluid (SAE-AMS-1424)	Aerospace De-icing fluid, 50/50 % mixture with water
Tap Water	Universal solvent
5% Sodium chloride solution	Sodium chloride is a universal compound used in many chemicals and de- icing fluids
Detergent (1% Teepol)	Commonly used industrial detergent
IPA - Isopropyl alcohol	Widely used as a solvent and cleaner